World Shale Gas Resources:
An Initial Assessment of 14 Regions
Outside the United States

Prepared by:
Mr. Vello Kuuskraa
Mr. Scott Stevens
Mr. Tyler Van Leeuwen
Mr. Keith Moodhe
Advanced Resources International, Inc.
Arlington, VA USA

Prepared for:
U. S. Energy Information Administration
Office of Energy Analysis

U.S. Department of Energy
Washington, DC 20585

April 2011

A

Advanced Resources
International, Inc.

Contact: Mr. Tyler Van Leeuwen
P:703.528.8420 | E: tvanleeuwen@adv-res.com | W: www.adv-res.com




World Shale Gas Resources: An Initial Assessment

Table of Contents

Executive Summary and Study RESUIES .........oooiiiiiiiiiiies e 1
MEENOAOIOGY ... ...t et s 2
L7 = o - I
5[ o P Il
Northern South America (Columbia, Venezuela)................oouuiiiiiiiiiiiiiiiiiiiiie 1]
Southern South America (Argentina, Chile, Uruguay, Paraguay, Bolivia, Brazil ....................... v
0] = o o USRS V
Eastern Europe (Ukraine, Lithuania, and other Eastern Europe countries)... ......................... VI

Western Europe (including France, Germany, Netherlands, Norway, Denmark, Sweden,

and United KiNGAOm. .. ... e et e Vi
Central North Africa (Algeria, Tunisia, LiDYa)...........co oo VIII
Western North Africa (Morocco, Mauritania, Western Sahara) ...............cccooiiiiiiiin. IX
Southern Africa (SOULh AfFICA)..... ... i e e X
(0 o1 = F PP PPTPPPPPPI XI
India and PakKistan. ... ... e e s Xl
TUTK Y . e Xl
AUSTIANIA. . e e XV
Appendix A - Shale Gas Resources by Basin/Formation...............ccceoiiiiiiiiiiiiciiee e, A
Appendix B - Success Factors by Country/Basin ... B



Figures

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4

Figure 2-5
Figure 2-6
Figure 2.7
Figure 2.8
Figure 2-9
Figure 2-10
Figure 2-11

Figure 2-12

Figure 2-13
Figure I-1
Figure I-2
Figure I-3
Figure I-4
Figure I-5

Figure I-6
Figure I-7
Figure I-8
Figure I-9
Figure I-10
Figure I-11
Figure 1-12
Figure 1-13
Figure I-16

World Shale Gas Resources: An Initial Assessment

Map of 48 Major Shale Basins in 32 Countries...........cceevevieiiiiiiiiiiiiieeeee e 1-7
Southern Tunisia, Ghadames Basin Stratigraphic Column... .................... ......2-3
Ghadames Basin Structure Depth Map and Cross Section..............cceeevvvven oo, 2-4
Ternary Diagram of Shale Mineralogy (Marcellus Shale)...... ............... ..........2-5
Relationship of Shale Mineralogy (Q, C and Cly) and Thermal Maturity to

GAS FIOW. ... e 2-6
Relationship of Gamma Ray and Total Organic Carbon.............cccccccvnnonenn . 2-7
Thermal Maturation Scale............cooiiiiii i e e 2-8
Thermal Maturity and Gas Storage Capacity............ coooeeiiiiiiies i, 2-8
Barnett Shale Resource and Play Areas............cccoovniiiiiiiiies i, 2-9
Marcellus Shale Adsorbed Gas Content..............cooon iiiies i, 2-13

Combining Free and Adsorbed Gas for Total Gas In-Place .........................
Lower Damage, More Effective Well Completions Provide Higher
Reserves PerWell...... ..o 2-16

The Properties of the Reservoir Rock Greatly Influence the

Effectiveness of Hydraulic Stimulations.... ........... ..o 2-18
3D Seismic Helps Design Extended vs. Limited Length Lateral Wells............. 2-19
Shale Gas Basins of Western Canada.. .............ccceevvviiiiiiniiiiieccee e, -2
Horn River (Muskwa/Otter Park Shale) Basin and Prospective Area................. -4
NE British Columbia, Devonian and Mississippian Stratigraphy.......................I-5
Horn River LNG Export Pipeline and Infrastructure.. RSP Y 4
Cordova Embayment (Muskwa/Otter Park Shale) Outline and

ProSPECHIVE AF€a.....ccoue i et -9
Cordova Embayment Stratigraphic Colum ...............evveiiiiiiiiiiiiiiiiiiiiiiiiies eeenn -9
Liard Basin Location, Cross Section and Prospective Area.........ccccccccevvven oo [-10
Liard Basin Stratigraphic Cross Section .............cceuiveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees I-11
Liard Basin and Prospective Area (Lower Besa River Shale)...........ccccceeveee.. [-12
Deep Basin, Montney Resource Play, Base Map...........cocoeiiiiiiiiiiiiiinenn. I-15
Montney and Doig Resource Plays, Stratigraphy........cccccccccvis ovvniiineenn =15
Deep Basin, Montney Shale Prospective Area.............cooiviiiiii i, I-16
Cutback Ridge — Montney Type LOg......ccovviiiiiiiiiiiiis s i I-16
Colorado Group, Prospective Area............cooiiiiiiiii e e [-20



Figure 1-17
Figure I-18
Figure I-19
Figure 1-20

Figure I-21
Figure |-22
Figure 11-1

Figure II-2

Figure II-3

Figure 11-4
Figure 1I-5
Figure II-6

Figure II-7

Figure I1-8

Figure II-9

Figure 11-10
Figure 111-1

Figure IlI-2
Figure III-3
Figure 111-4
Figure IlI-5
Figure IlI-6
Figure IlI-7
Figure 111-8
Figure I11-9

Figure 111-10

World Shale Gas Resources: An Initial Assessment

Utica Shale Outline and Prospective Area............ccccoiiiiiiiiiiiii e o [-22
Utica Shale Stratigraphy......... ..ot s [-23
Horton and Frederick Brook Shale (Horton Group) Stratigraphy...... ..............I-25
Preliminary Outline and Prospective Area for Horton Bluff Shale

(NOVA SCOLIA). ..ot e e e e e e e eaaaaaaes I-26
Location of the Moncton Sub-Basin................oooi 1-27
Structural Controls for Moncton Sub-Basin (New Brunswick) Canada... .. ...... [-28
Onshore Shale Gas Basins of Eastern Mexico’s

GUIf of MeXICO BasiN......... coouiiiiiiieee e s -2
Stratigraphy of Jurassic and Cretaceous rocks in the Gulf of Mexico

Basin, MexXiCo and US A ... ..o e e e 11-5
Stratigraphic Cross-Section Along the Western Margin of the Burgos

BN . .t e e -7
Burgos Basin Outline and Shale Gas Prospective Area..............ccccoeeeees innis -8
Sabinas Basin Outline and Shale Gas Prospective Area.............................1I-10

Geologic Map of the La Popa Sub-Basin, Southeastern Portion

of the Sabinas Basin..........coot i -12
Potentially Prospective Pimienta Formation (Tithonian) Shale,

BIE= L] o {eTo TN = 2= - o I 1-14
Detailed Cross-Section of the Tuxpan Platform in East-Central

Mexico Showing Thick Lower Cretaceous and Upper Jurassic

Source Rocks Dipping into the Gulf of Mexico Basin.............cccccceeeeeieeeiinnn.n. 11-16
Potentially Prospective Shale Gas Area of the Tuxpan Platform................. ...1I-17
Veracruz Basin Outline and Shale Gas Prospective Area.............cccccveeeeen... 1-19
Gas Shale Basins of Northern South America..........cccccooiiiiiiiiiiiiiiiieeeeeeen -2
Regional Outline of the Maracaibo Basin ..............ccccoiii -4
Seismic Profiles, Maracaibo Basin...........coooeuiiiiiiiii e, -5
Seismic Profiles, Maracaibo Basin ........c.oveueveeeee e 111-6
Maracaibo Basin Stratigraphy ...........eeeiiiiiiiiiiiiiiiiiiiiii s -7
La Luna Fm Isopach, Maracaibo Basin............cccccooviiiiiiiiiiie e, 111-8
Maracaibo Basin Depth to Basement............ccccoiiiiiiiiiiiii e, -10
Maracaibo Basin Cross SECHON ..........evviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeees [1-10
Maracaibo Basin, La Luna Shale Prospective Area...........ccccoovvviiiiiiiiieeenneee. -11
Catatumbo Sub-basin Cross-Section ............cccocoiiiiiiiiiiiiiiiee e -12



Figure I11-11
Figure IlI-12

Figure 111-13
Figure 111-14

Figure V-1
Figure IV-2
Figure IV-3
Figure IV-4
Figure IV-5

Figure IV-6
Figure IV-7
Figure V-8

Figure IV-9
Figure IV-10

Figure IV-11
Figure 1V-12
Figure V-1
Figure V-2

Figure V-3
Figure V-4
Figure V-5
Figure V-6
Figure V-7
Figure V-8
Figure V-8
Figure VI-1
Figure VI-2
Figure VI-3
Figure VI-4

World Shale Gas Resources: An Initial Assessment

La Luna Fm Basemap and Geologic Properties, Catatumbo Sub-basin......... -13
Calculated TOC (wt/%) Well Log from Cerrito 1 Well, South-Central

Catatumbo SUD-DaSIN .........uei -15
Capacho Fm Basemap and Geologic Properties, Catatumbo Sub-basin ....... -16

Source-Rating Chart Plotting Original HI and TOC Among Formations

in the Catatumbo Sub-basin...............oo -18
Shale Gas Basins of Southern South America..........ccccooiiiiiiiiiiiiiiiiieee, V-1
Neuquen Basin Shale Gas Prospective Area and Basemap ...........ccccccueeee... V-3
Neuquen Basin Stratigraphy ... V-4
Neuquen Basin SW-NE Cross Section...........couuiiiiiiiiiiieiiieieeeeeeeeeee e V-5
Vaca Muerta Fm, TOC, Thermal Maturity, and Prospective Area,

I T TU o [ 1= T o I = 2= T o PSSR V-7
SAN JOIgE BasiN .....uueiiiiiiiiiiiiiiii V-9
San Jorge Basin Stratigraphy ... IV-10
Aguada Bandera Fm, TOC, Thermal Maturity, and Prospective Area,

SAN JOIgE BasiN .....uueiiiiiiiiiiiiiiii IV-12
Stratigraphy of the Austral-Magallanes Basin, Argentina and Chile............... IV-15
Inoceramus Shale, Depth, TOC, and Thermal Maturity,

Austral / Magallanes Basin, Argentina and Chile..............ccccc. IV-16
Stratigraphy, Parana-Chaco Basin............cccccooiiiiiiiiiiiieeeeeeeeee e IV-18
Parana-Chaco Basin............ooooviiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e IV-19
Major Shale Gas Basins Of Poland...............ooiiiiiiiiiiiiiice e, V-1
Onshore Baltic Basin, Lower Silurian Llandovery Shale Depth and

1 (= V-4
Baltic Basin Strategraphic Column ... V-5
Baltic Basin Depth and Structure Cross Section .............ccccoeiviiiiiiiiiiiciiiieeeeeees V-5
Poland Shale Gas Leasing ACtiVity ... V-7
Lublin Basin Shale gas Prospective Area............ccccceeviiiiiiiiiiiiiiieeeeeeeeeeeeeeee V-9
Lublin Basin Strategraphic Column .............ouuiiiiiiiiie e V-10
Lublin Basin Fault Map and Cross Section..............cceuvvviiiieiiieeiieiiiiiiiiiiinennnnns V-10
Podlasie Basin Depth to Base of Llandovery Shale................cooovviiieiiinnnes V-13
Shale Gas Basins of Eastern EUrope..........ccoooovvviiiiiiciie e, VI-1
Baltic Basin Structure Map ... VI-4
Baltic Basin Stratigraphic Column ..o VI-5
Baltic Basin Cross SEeCHON .........ccvvviiiiiiiiiiiiiiiiiiiiieeiieeeeeee e eeeeeeeeeneees VI-5



World Shale Gas Resources: An Initial Assessment

Figure VI-5 Dnieper-Donets Shale Gas Prospective Area ............cccveeeiiiiiiiiiiiiiiieeeeeeeeans VI-9
Figure VI-6  Dnieper-Donets Basin Stratigraphic Column.............cccccooiiiiiiiiiiiiiis VI-10
Figure VI-7  Central Dneiper-Donets Basin Stratigraphic Column..............ccccccceeiiiinnnnne. VI-10
Figure VI-8 Lublin Basin Shale Gas Prospective Area...........cccoooevviiiiiiiiieiiiiiieeeeeeeeeee, VI-13
Figure VI-9 Lubin Basin Stratigraphic Column ..............ooiiiiiiiii e, VI-14
Figure VI-10  Lublin Basin Geology and Cross SeCtioN ............ccuvviiiiiiiiiiiieiiiiiiiiiiiiiiiiiiinns VI-15
Figure VI-11  Pannonian-Translyvanian Basin.............cccooooiiiiiiiiiii e, VI-18
Figure VI-12 Pannonian-Transylvanian Basin Stratigraphic Column............................... VI-19
Figure VI-13 Generalized Pannonian-Transylvanian Depth and Structure Cross Section.. VI-19
Figure VI-14 Carpathian-Balkanian Basin Map.............ccooiiiiiiiiiiiiieeeeeee e ViI-21
Figure VI-15 Carpathian-Balkanian Stratigraphic Column....................ooiiiiiiice, VI-22
Figure VI-16 Carpathian-Balknian Basin Component Map............cccooivieiiiiiiiiiiiee e, VI-23
Figure VI-17 Carpathian-Balknian Basin Cross Section...............cocevvviiiiiiiiiiiiiiiiiiiiiiiiiiinns VI-23
Figure VII-1  Shale Gas Basins of Western EUrope............ccoooiviiiiiiiii i, VII-1
Figure VII-2  Prospective Area and Gross Isopach of Permian Carboniferous Shales,

PariS BasSin. . .. i aaaaaanaa Vil-4
Figure VII-3  East Paris Basin Stratigraphic Column............ccooeiiiiiiiiiiiiiiiiiiiiiiiiiiie VII-5
Figure VII-4  Paris Basin Cross SECtiON..........cccooooiiiiiiiiiiii e VII-5
Figure VII-5  Moselle Permit, Paris Basin ...............uuuiiiiiiiiiiii s VII-6
Figure VII-6  Southeast Basin Prospective Area and Upper Jurassic Shale Isopach........... VII-8
Figure VII-7  Southeast Basin Stratigraphic Column..............cccoiiiiiiiiiiiiiicce e, VII-9
Figure VII-8 Generalized Southeast Basin Cross Section...........ccc.ooooiiiiiiiiiiiiiie e, VII-9
Figure VII-9  Southeast Basin Leasing Map (Selected) ..............uuuveriiiiiiiiiiiiiiiiiiiiiiiiiiiennns VII-11
Figure VII-10 North Sea-German Basin Prospective Shale Formations...............cccceuuuee. VII-14
Figure VII-11 North Sea-German Basin Stratigraphic Column..................ovviviiiiiiiiieniiinnnnns VII-15
Figure VII-12 North Sea-German Basin Cross Section............cccuuueieiiiiiiiiiiiiiiiiieeee s VII-15
Figure VII-13 North Sea-German Basin Leasing Activity ...........ccceeviiiiiiiiiiiiiiie s VII-17
Figure VII-14 Alum Shale Geographic Extent...........cccocooiiiiiiiii e, VII-19
Figure VII-15 Central Sweden Stratigraphic Column .............coooviiiiiiiiiiiiiiiiieeeie VII-20
Figure VII-16 Shell’s Alum Shale Acreage in Southern Sweden ............cccccvvvviiiiiiiiiiennnnne. VII-21
Figure VII-17 UK Northern Petroleum Province, Basins, and Shale Gas

Prospective Ar€as..........ciiiiiiiiec e VII-23
Figure VII-18 Northern Petroleum System Stratigraphic Column............ccccvvviiiiiiiiiiiiinnne. VII-24
Figure VII-19 Cleveland Basin Cross-Section, U.K. Northern Petroleum System ............. VII-24
Figure VII-20 Operators Exploring Shale Gas in the U.K. Northern Petroleum System ...... VII-26

\



Figure VII-21
Figure VII-22
Figure VII-23
Figure VII-24
Figure VII-25
Figure VII-26
Figure VII-27
Figure VIII-1
Figure VIII-2
Figure VIII-3
Figure VIII-4
Figure VIII-5
Figure VIII-6
Figure VIII-7
Figure VIII-8
Figure IX-1
Figure IX-2

Figure IX-3
Figure IX-4
Figure IX-5
Figure IX-6
Figure IX-7
Figure 1X-8
Figure 1X-9
Figure X-1

Figure X-2
Figure X-3

Figure X-4
Figure X-5
Figure X-6
Figure X-7

World Shale Gas Resources: An Initial Assessment

U.K. Southern Petroleum System and Shale Gas Prospective Area ............ VII-28
Southern Petroleum System Stratigraphic Column ............cccccooiiiiiiiinnnen. VII-29
Weald Basin Cross-Section, U.K. Southern Petroleum System.................... VII-29
Operators Exploring Shale Gas in the U.K. Southern Petroleum System.... VII-31
Vienna Basin Regional Setting...........ccooiiiiiiiiii VII-32
Geologic Setting of the Vienna Basin ... VII-33
Selected Vienna Basin Cross SeCtONS ...........uuuuiiiiiiiiiiieeeeee e VII-34
Shale Gas Basins and Pipeline System of Central North Africa .................... VIII-1
Ghadames Basin Stratigraphic Column ... VIII-4
Ghadames Basin Structure Depth Map and Cross Section................ccccocee. VIli-4
Silurian Tannezuft Vitrinite Reflectance.............ccccoooiiiiiiiiiiiii, VIII-5
Devonian Frasnian Vitirinite Reflectance..............oviiiiieee, VIII-5
Structure and Cross Section of Northern Sirt Basin.............cccccvvciiiiiiinneene. VIII-8
Sirt Basin Stratigraphic Column ............ciiiiiiiiiic e, VIII-9
Net Shale Isopach of Sirt and Rachmat Formations.................ccccovvveeen. VIII-9

Shale Gas Basins Of MOIOCCO .....c..iuieeee e IX-1

Simplified History of Morocco’s Depositional Environment,

OrdoVician-DeVORNIAN ..............uuuuuueeiiiiiiiii e IX-3
Tindouf Shale Prospective Area, SE Anatolian Basin, Morocco....................... IX-4
Tindouf Basin Stratigraphic COlUMN ..o IX-6
Tindouf Basin Cross SECHON .........uuuuuuiii s IX-6
Tindouf Basin Exploration ACreage .........ccceieeeiiiiiiiiiiiei e IX-7
Talda Basin Prospective Area, MOIrOCCO .........ccoveeiiiiiiiiiiieiieciieie e IX-9
Tadla Basin Stratigraphic Column ..........ccccooiiiiiiiiieeeeeee e IX-10
Tadla Basin Cross SECHONS ..........uuuuiiiii s IX-10

Outline of Karoo Basin and Prospective Shale Gas Area of

SOULN AfTICA ... X-l
Stratigraphic Column of the Karoo Basin of South Africa ..........ccccccccoooeeiiin. X-4
Schematic Cross-Section of Southern Karoo Basin and

Ecca Group Shales........cooo oo X-5
Volcanic Intrusions in the Karoo Basin, South Africa.........cccooevveiiiiiieiiiieeen, X-5
Lower Ecca Group Structure Map, Karoo Basin, South Africa.......................... X-6
Total Organic Content of Prince Albert and Whitehill Formations...................... X-7
Carbon Loss in Lower Ecca Group Metamorphic Shale ...........ccccccccoeeeiiiinnnne. X-8

vi



Figure X-8

Figure X-9

Figure X-10
Figure XI-1

Figure XI-2
Figure XI-3
Figure XI-4
Figure XI-5
Figure XI-6
Figure XI-7
Figure XI-8

Figure XI-9

Figure XI-10
Figure XI-11

Figure XI-12

Figure XI-13

Figure XI-14

Figure XI-15

Figure XI-16
Figure XI-17

Figure XI-18

World Shale Gas Resources: An Initial Assessment

Preliminary Isopach Map of the Whitehill Formation..................cccccooviieiii, X-9
Map Showing Operator Permits in the Karoo Basin, South Africa .................. X-12
Natural Gas Pipeline System Map of South Africa ..................cccc X-13
Major Shale Gas Basins and Pipeline System of China ..............cccccccceeeee XI-1

Prospective Lower Silurian Shale Gas Areas, Sichuan Basin,

SICAUAN PrOVINCE ... Xl-4
Prospective Lower Cambrian Shales Gas Area, Sichuan Basin,

ST (o o 10 F= 1 T {01/ 1 o= SR XI-4

Stratigraphic Column for Cambrian- and Silurian-Age Shales,

][] U =T g T = = 1 o S XI-5
Tarim Basin’s Organic-rich Ordovician Shales. (Note location of

cross Sections A-B-C- and D-E.) ........uuu e X1-10
Tarim Basin’s Cambrian Shales. (Note location of cross sections

A-B-C- and D-E.)ccoooioiieeeeeeeeeee XI-10
Tarim Basin West-To-East Cross-Section A-C for Ordovician- and

Cambrian-Age Shal€S............ouiiiiiiiiiiiiiii XI1-11
Tarim Basin South-To-North Cross-Section D-E for Ordovician-

and Cambrian-Age Shales ... XI-11
Tarim Basin Stratigraphy Showing Organic-Rich Upper

Ordovician and Lower Cambrian Shales .............oouviiiiiiiiiiiciiici e, XI-12
China’s Other Shale Gas Basins.............uuuiiiiiiiiiiiiiiiiiiiiiiieiiieieeeeeeeneees XI-15
Ordos Basin’s Overthrusted Western Margin and Simple Central

Deep Shangbei SIOPE ........ciiii i XI-16
Ordos Basin (Permian Shanxi Fm) Non-Marine, Mainly Lacustrine Shales ... XI-16
Cross-Section of Paleozoic Formations in the Ordos Basin, Showing
Organic-Rich Source Rocks in the Carboniferous Taiyuan and

Permian Shanxi FOrmations.............cccooiiiiiiiiiici e XI-17

The Junggar Basin’s Organic-Rich Jurassic and Permian Source Rocks...... X1-18

Junggar Basin Structural Elements showing Wulungu, Central, and North

Tianshan Foreland Depressions (Note location of cross-section line A-A’.)... XI-19
Junggar Basin Source-Rock Shales in the Jurassic and Permian ................. XI-19
Cross-Section of the North China Basin with Active Normal and

StrKe-SHP FAUILS......eee e X1-20
The Turpan-Hami Basin Source Rocks Include Upper Permian And

Middle Jurassic Mudstones with High TOC ..., Xl1-21

Vii



Figure XI-19
Figure XI-20
Figure XI-21
Figure XII-1
Figure XII-2
Figure XII-3
Figure XlI-4
Figure XlI-5
Figure XII-6
Figure XII-7
Figure XII-8
Figure XII-9
Figure XlI-10
Figure XII-11
Figure XII-12
Figure XI1-13
Figure XlI-14
Figure XII-15
Figure XlI-16
Figure XII-17
Figure XII-18
Figure XII-19
Figure Xl1-20
Figure XII-21
Figure XIlI-22
Figure XII-23
Figure XII-24
Figure XII-25
Figure XII-26

Figure XIII-1
Figure XIII-2
Figure XIII-3
Figure XIlI-4
Figure XIII-5

World Shale Gas Resources: An Initial Assessment

Turpan-Hami Basin Stratigraphic Column .............ccccceeiiiiiriiicie e, XI-22
The Songliao, Hailar, and Erlian Rift Basins in Northeast China.................... XI1-23
The Songliao Basin’s Numerous Small Pull-Apart Grabens .......................... Xl1-24
Shale Gas Basins and Natural Gas Pipelines of India/Pakistan ..................... XIi-1
Cambay Basin Study Ar€a.........ccoiieiiiiiiiiicie e Xll-4
Generalized Stratigraphic Column of the Cambay Basin...............cccccuvvveeeeee. XIl-4
Organic Content of Cambay “Black Shale”, Cambay Basin............................ XlI-5
Cross Section of Cambay “Black Shale” System..........ccccooooiiiiiiiiiiiiniinnn, XlI-5
N-S Geological Cross-Section Across Cambay Basin..........cccccccvvvviiiiiinnnnnn. XII-5
Depth and Thermal Maturity of Cambay “Black Shale”, Cambay Basin.......... XII-8
Gross Isopac of Cambay Black Shale, Cambay Basin ............cccccceeeeiiieniiennn, XI1-8
Prospective Areas of the Cambay “Black Shale”, Cambay Shale Basin.......... XII-9
Krishna Godavari Basin’s Horsts and Grabens ...........ccccccceiviiiiiiiiiiiiccenne. XII-10
Stratigraphic Column, Mandapeta Area, Krishna Godavari Basin ................ XlI-11
Cross Section for the Krishna Godavari Basin ................cccccveiiiiiiiiiiiiinnnnnnns XII-12
Prospective Areas for Shale Gas in the Krishna Godavari Basin.................. Xll-14
Cauvery Basin Horsts and Grabens...............ueeeuiiiiiiiiiiii XII-15
Generalized Straigraphy of the Cauvery Basin...........cccoooooiiiiiiininnn, XlI-17
Generalized Straigraphy of the Cauvery Basin.............ccccccvviiiiiiiiiiiiiiiiiinnns XII-17
Shale Isopach and Presence of Organics, Cauvery Basin ..............cccceuueeee XII-18
Prospective Areas for Shale Gas, Cauvery Basin ........c..cccooooeiiiiiiiiiiennn. XII-18
Thanjavur Sub-Basin and Geological Section Across Cauvery Basin........... XII-19
Damodar Valley Basin and Prospectivity for Shale Gas ............ccccevvvuennn. XII-20
Regional Stratigraphic Column of the Damodar Valley Basin, India.............. XlI-21
Generalized Stratigraphic Column of the Gondwana Basin.......................... XII-22
Raniganj Sub-Basin Cross SeCtion ...........ccuuuviiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiie XII-23
Basin Outline and Karachi Trough, Southern Indus Basin...............ccccco..... XII-26
Isopach of Sembar Shale, Southern Indus Basin, Pakistan.......................... XII-28

Isopachs and Facies of Paleocene Ranikot Formation , Southern

INdus Basin, PakKiStan ............oouiiiiieii et XI1-28
Shale Gas Basins of TUIKEY.......ccoeoiiiiiiiiiii e XIlI-1
Dadas Shale Prospective Area, SE Anatolian Basin, Turkey ...........ccc.......... XIlI-4
SW Anatolia Basin Stratigraphic Column ..............cccoiiiiiiiiiieeeeeee XI1-5
SW Anatolian Basin CrosSs-SeCHON ...........uuuuiiiiiicrciecee e XII-5
Exploration Leases for Dadas Shale, SE Anatolian Basin, Turkey ................ XII-8

viii



World Shale Gas Resources: An Initial Assessment

Figure XIII-6 Prospective Shale Formations of the Thrace Basin, NW Turkey ................. XI-11
Figure XllI-7  Thrace Basin Stratigraphic Column.............cccooiiiiiiiiiie s XI-12
Figure XlII-8 Thrace Basin Cross SeCtON...........cccuuiiiiiiiiiiieee e Xl-12
Figure XIII-9 Shale Gas Exploratory Leases, Thrace Basin, Turkey .........ccccccceeeiieenninnnn. Xlli-14
Figure XIV-1 Australia’s Prospective Gas Shale Basins, Gas Pipelines,

and LNG InfrastrucCture. ... XIV-2
Figure XIV-2 Major Structural Elements of the Cooper Basin.............c..cooooiiiiiiiiiiininnnnnn, XIV-4

Figure XIV-3 Seismic Reflection Line Showing Permian REM Sequence In

The Cooper Basin And Location Of Beach Energy’s Planned

Holdfast-1 Test Well, Scheduled For January 2011 .........cooovviiiiiiiiiiiiiiiiinnnn. XIV-5
Figure XIV-4 Stratigraphy of the Cooper Basin, Showing Permian-Age

Shale Targets (Roseneath, Epsilon, Murteree) .............ccccuvveeiiiiiiiiiiiiiinnnnnnns XIV-6
Figure XIV-5 Stratigraphic Cross-Section In The Cooper Basin Showing

The Laterally Continuous REM Section..............couviiiiiiiiiiiiicieeeeeee, XIV-7
Figure XIV-6 Western Portion Of The Cooper Basin Showing Approximate ...................... XIV-9

Prospective Shale Gas Area
Figure XIV-7 Location And Shale-Prospective Area Map For Maryborough

Formation, Maryborough Basin...........ccoooiiiiiiiiii e XIV-11
Figure XIV-8 Stratigraphy Of The Maryborough Basin Showing Marine

Organic-Rich Shale In The Maryborough Formation ...............cccccvvviiiiinnene. XIV-12
Figure XIV-9 Cross-Section Of The Maryborough Basin Showing The

Cherwell And Goodwood Mudstone Members Of The Cretaceous

Maryborough FOrmation............ceeeiiiiiiiiiiiiiiiiiiiiiiiieieeeeeee e XIV-13
Figure XIV-10 Location And Shale-Prospective Area Map Of The Perth Basin.................. XIV-14
Figure XIV-11 Perth Basin Operator AWE’s Woodada Deep 1 Well Cored the

Organic-Rich Carynginia Shale...............uuuuiiiiiii XIV-15

Figure XIV-12 Stratigraphy of the Perth Basin Showing the Prospective

Lower Triassic Kockatea and Permian Carynginia Shales ...........ccccc.......... XIV-17
Figure XIV-13 Structural Cross-Section of the Perth Basin Showing 700-m Thick

Kockatea and 250-m Thick Carynginia Shales at Prospective

1500-2800 M DEPLN ... XIV-18
Figure XIV-14 Structural Elements of the Canning Basin in Northwestern Australia........... XIV-21
Figure XIV-15 Stratigraphy Of The Canning Basin Showing Carboniferous Goldwyer

And Laurel Fm Shales ... XIV-22
Figure XIV-16 Regional Cross-Section Showing Middle Ordovician Goldwyer

iX



World Shale Gas Resources: An Initial Assessment

Shale Is Excessively Deep (>5 Km) In the Central Kidson Sub-Basin,

But At Prospective Depth On Its Flanks As Well As Throughout

The Southern Fitzroy Trough ........c.ceeiiiiiiiii e XIV-23
Figure XIV-17 Detailed Cross-Section Showing Carboniferous Laurel Shale,

The Canning Basin’s Main Source Rock, Is About 500 M Thick And

1700 M Deep In The Southern Fitzroy Trough — Jones Arch Region........... XIV-23
Figure XIV-18 TOC In The Goldwyer Fm, Canning Basin Generally Ranges From

About 1% To 5% (Mean 3%), With Some Values Over 10%....................... XIV-24



Tables

Table 1-1
Table 1-2

Table 1-3
Table 1-4

Table 2-1
Table 1-1
Table |-2
Table 11-1
Table 111-1
Table V-1
Table V-1
Table VI-1
Table VII-1
Table VIII-1
Table IX-1
Table X-1
Table XI-1

Table XII-1

Table XII-2
Table XII-3
Table XIlII-1
Table XIV-1

World Shale Gas Resources: An Initial Assessment

The Scope of the “International Shale Gas Assessment”....................oooeenil. 1-2
Risked Gas In-Place and Technically Recoverable Shale Gas

Resources: Six Continents..........oooiiiiiiiiiie e e 1-3
Risked Gas In-Place and Technically Recoverable Shale Gas Resources:

22 o 11 ) {5 =T3S 1-5

Comparison of Rogner’s and This Study Estimates of Shale Gas Resources

IN-PIACE ...t s 1-6
Reservoir Properties and Resources of Central North Africa ......... .............. 2-20
Shale Gas Reservoir Properties and Resources of Western Canada... .... ....... -3
Gas Shale Reservoir Properties and Resources of Eastern Canada............. 1-21
Shale Gas Reservoir Properties and Resources of Mexico..............ccoenneane. 11-3
Gas Shale Reservoir Properties and Resources of Northern South America ...111-3
Reservoir Properties and Resources of Southern South America.................... V-2
Shale Gas Reservoir Properties and Resources of Poland ............................. V-2
Reservoir Properties and Resources of Eastern Europe ... VI-2
Shale Gas Reservoir Properties and Resources of Western Europe.............. VII-2
Reservoir Properties and Resources of Central North Africa.............cc.......... VIII-2
Reservoir Properties and Resources of MOroCCO ..........c.ceeeiiiiiiiiiiiiiieeeiiieees IX-2
Shale Gas Reservoir Properties and Resources of the Karoo Basin................. X-2

Shale Gas Reservoir Properties and Resources - - Sichuan and

Tarim Basins, ChiNa.........couuiiiiiiiicee e Xl-2
Shale Gas Reservoir Properties and Resources of India/Pakistan ................. Xll-2
Prospective Areas For “Black Shale” of Cambay Basin...............ccccvvveenn. XlI-7
Analysis of Ten Rock Samples, Kommugudem Shale.......................cooo. Xll-12
Shale Gas Reservoir Properties and Resources of Turkey .............cccceeeeeen. XI-2
Shale Gas Reservoir Properties and Resources of Australia ........................ XIV-2

xi



World Shale Gas Resources: An Initial Assessment

1. EXECUTIVE SUMMARY AND STUDY RESULTS

INTRODUCTORY REMARKS

The “World Shale Gas Resources: An Initial Assessment”’, conducted by Advanced
Resources International, Inc. (ARI) for the U.S. DOE’s Energy Information Administration (EIA),

evaluates the shale gas resource in 14 regions containing 32 countries, Table 1-1.

The information provided in the 14 regional reports (selected for assessment by EIA)
should be viewed as initial steps toward future, more comprehensive assessments of shale gas
resources. The study investigators would have, if allowed, devoted the entire study budget to
just one of the 14 regions and would have judged this more in-depth time and budget
investment “well spent”. Alas, that was not possible. As such, this shale gas resource
assessment captures our “first-order” view of the gas in-place and technically recoverable
resource for the 48 shale gas basins and 69 shale gas formations addressed by the study. As
additional exploration data are gathered, evaluated and incorporated, the assessment of shale

gas resources will become more rigorous.
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Table 1-1. The Scope of the “World Shale Gas Resources: An Initial Assessment”

Number of
. . Number of Number of
Continent Region/Country - . Gas Shale
Countries Basins .
Formations
North l. Canada 1 9
or, Il. Mexico 1 5 8
America
Subtotal 2 12 17
South lll. Northern South America 2 2 3
Ou_ IV. Southern South America 6 4 7
America
Subtotal 8 6 10
V. Poland 1 3 3
VI. Eastern Europe 3 3 3
Europe
VIl. Western Europe 7 6 9
Subtotal 11 12 15
VIIl. Central North Africa 3 2 4
. IX. Morocco 3 2 2
Africa -
X. South Africa 1 1 3
Subtotal 7 5 9
XI. China 1 2 4
i XIl. India/Pakistan 2 5 6
Asia
XIll. Turkey 1 2 3
Subtotal 4 9 13
Australia XIV. Australia 1 4 5
Total 32 48 69

Two points are important to keep in mind when viewing the individual shale gas basin-

and formation-level shale gas resource assessments:

= First, the resource assessments provided in the individual regional reports are only
for the higher quality, “prospective areas” of each shale gas basin and formation.
The lower quality and less defined shale gas resource areas in these basins, that
may hold additional shale gas resources, are not included in the quantitatively

assessed and reported values.

» Second, the in-place and recoverable resource values for each shale gas basin and
formation have been risked to incorporate: (1) the probability that the shale gas
formation will (or will not) have sufficiently attractive gas flow rates to become
developed; and (2) an expectation of how much of the prospective area set forth for

each shale gas basin and formation will be developed in the foreseeable future.
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No doubt, future exploration drilling will lead to adjustments in these two risk factors and
thus the ultimate size of the developable international shale gas resource. We would urge the
U.S. Energy Information Administration, who commissioned this valuable, “cutting edge” shale
gas resource assessment, to capture and incorporate the significant volume of shale gas
exploration and resource information that will become available during the next several years,

helping keep this shale gas resource assessment “evergreen”.

SUMMARY OF STUDY FINDINGS

Although the exact resource numbers will change with time, our work shows that the

international shale gas resource is vast.

= Overall, we have identified and assessed a shale gas resource equal to 22,016 Tcf

of risked gas in-place, not including U.S. shale gas resources.

= Applying appropriate recovery factors, we estimate a technically recoverable shale

gas resource of 5,760 Tcf.

Importantly, much of this shale gas resource exists in countries with limited conventional
gas supplies or where the conventional gas resource has largely been depleted, such as in

China, South Africa and Europe.

The regional level tabulations of the risked in-place and technically recoverable shale

gas resource are provided in Table 1-2.

Table 1-2. Risked Gas In-Place and Technically Recoverable Shale Gas Resources:
Six Continents

Continent Risked Gas In-Place Rls;Zi:::r:rt?IZa"y

(Tcf) (Tef)

North America 3,856 1,069

South America 4,569 1,225
Europe 2,587 624

Africa 3,962 1,042

Asia 5,661 1,404
Australia 1,381 396

Total 22,016 5,760

A more detailed tabulation of shale gas resources (risked gas in-place and risked
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technically recoverable), at the country-level, is provided in Table 1-3.

Additional information on the size of the shale gas resource, at a detailed basin- and

formation-level, is provided in Appendix A.

Significant additional shale gas resources exist in the Middle East, in Russia, in
Indonesia, and numerous other regions and countries not yet included in our study. Hopefully,

future editions of this report will more fully incorporate these other important shale gas areas.
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Table 1-3. Risked Gas In-Place and Technically Recoverable Shale Gas Resources: 32 Countries

. Technically
. . Risked Gas In-
Continent Region Country Recoverable
Place (Tcf)
Resource (Tcf)
I. Canada 1,490 388
North -
America Il. Mexico 2,366 681
Total 3,856 1,069
Columbia 78 19
lll. Northern South |- - - - - V____I ————————— 45———“——-—11——-—-
America enezuea
Subtotal 120 30
o _Argﬁntirﬁ I _2,712 e 24 o
Bolivia 192 48
South | |- -== il nl i B ity
. Brazil 906 226
America Iv. southernSouth - — — — — — | — — — —| — — — — A
. Chile 287 64
America
_ _ _Paaguay | 249 | _ €
Uruguay 83 21
Subtotal 4,449 1,195
Total 4,569 1,225
Poland 792 187
Lithuania 17 4
Vl. Eastern Europe | Kaliningrad | 76 | 19
Ukraine 197 42
1,082 252
France 720 180
Germany 33 8
Europe
I Netherands | 66 | i1
VIl. Western Europe | ——--—--— Sweden __ __ 1 Lo A "o
Norway 333 83
__ Demmark_ _ | _ %2 _  _|_ _23 _ |
UK. 97 20
Subtotal 1,505 372
Total 2,587 624
Algeria 812 230
Libya 1,147 290
VIIl. Central North Africa| Tunisia | 61 | 18
Africa Morroco* 108 18
Subtotal 2,128 557
X. South Africa 1,834 485
Total 3,962 1,042
XI. China 5,101 1,275
_ XIL India/Pakistan | — - - — -9 _____f___ 20 - -
Asia Pakistan 206 51
XIil. Turkey 64 15
Total 5,661 1,404
Australia XIV. Australia 1,381 396
Grand Total 22,016 5,760

* Includes Western Sahara & Mauritania
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COMPARISON OF STUDY FINDINGS

World Shale Gas Resources: An Initial Assessment

Prior to this study - - “World Shale Gas Resources: An Initial Assessment” - - only one

other study is publically available that addresses the overall size of the shale gas resource.

This is the valuable work by H-H. Rogner.!

Our detailed basin-by-basin assessments of the shale gas resource, show that the shale

gas resource in-place is larger than estimated by Rogner, even accounting for the fact that a

number of the large shale gas resource areas (such as Russia and the Middle East) have not

yet been included in our study (but are included in Rogner’s shale gas resource numbers).

» OQverall, our gas study established a risked shale gas in-place of 25,300 Tcf (when

we include our shale gas estimate for the U.S. of 3,284 Tcf) compared to Rogner’s

estimate of 13,897 Tcf of shale gas in-place when we exclude the areas of the world

not included in this study. (Rogner’s total shale gas in-place is 16,112 Tcf.)

= The largest and most notable areas of difference in the shale gas resource

assessments are for Europe, Africa and North America, Table 1-4.

Table 1-4. Comparison of Rogner’s and This Study Estimates of Shale Gas Resources In-Place

Contnent | A
1. North America* 3,842 7,140
2. South America 2,117 4,569
3. Europe 549 2,587
4, Africa** 1,548 3,962
5. Asia 3,528 5,661
6. Australia 2,313 1,381
7. Other*** 2,215 n/a
Total 16,112 25,300

*Includes U.S.shale gas in-place of 3,.824 Tcf, based on estimated (ARI) 820

Tcf of technically recoverable shale gas resources and a 25% recovery

efficiency of shale gas in-place.
** Rogner estimate includes one-half of Middle East and North Africa (1,274)
and Sub-Saharan Africa (274 Tcf).

*** Includes FSU (627 Tcf), Other Asia Pacific (314 Tcf) and one-half of Middle
East/North Africa (1,274) Tcf.

" Rogner, H-H., “An Assessment of World Hydrocarbon Resources”, Annu. Rev. Energy Environ. 1997, 22:217-62.
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2. SHALE GAS RESOURCE ASSESSMENT METHODOLOGY

INTRODUCTION

This C hapter s ets forth our m ethodology for a ssessing the i n-place and r ecoverable
shale gas resources for the 14 regions (encompassing 32 countries) addressed by this study.
The methodology relies on extensive geological information and reservoir properties assembled
from the technical literature and data from publically available company reports and
presentations. This pu blically a vailable i nformation has been au gmented by i nternal ( non-
confidential) p riorw orkon U .S.and i nternationals hale gasby Advanced R esources

International.

The regional reports should be viewed as initial steps toward future, more
comprehensive as sessments o f shale g as r esources. A s addi tional ex ploration dat a ar e
gathered, evaluated and incorporated, these regional assessments of shale gas resources will

become more rigorous.

RESOURCE ASSESSMENT METHODOLOGY
The m ethodology for conducting the basin- and formation-level as sessments of s hale

gas resources includes the following five topics:

1. Conducting preliminary geologic and reservoir characterization of shale basins and
formation(s).

2. Establishing the areal extent of the major shale gas formations.
3. Defining the prospective area for each shale gas formation.

4. Estimating the risked shale gas in-place.

5. Calculating the technically recoverable shale gas resource.

Each of these five shale gas resource assessment steps is further discussed below.
The s hale gas resource as sessment for C entral N orth Africa and par ticularly the Ghadames

Basin is used to illustrate certain of these resource assessment steps.

February 17, 2011 2-1 A
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2.1. Conducting Preliminary Geologic and Reservoir Characterization of
Shale Basins and Formation(s).

The resource assessment begins with the compilation of data from multiple public and
private sources to define the shale gas basins and to select the major shale gas formations to
be assessed. The stratigraphic columns and well logs, showing the geologic age, the source
rocks and other data, are used to select the major shale formations f or f urther study, as

illustrated in Figure 2.1 for the Ghadames Basin of southern Tunisia.

Preliminary geological and reservoir data are assembled for each major shale formation,

including the following key items:
» Depositional environnent of shale (marine vs non-marine)
» Depth (to top and base of shale interval)
= Structure, including major faults
= Gross shale interval
= Organically-rich gross and net shale thickness
= Total organic content (TOC, by wt.)
» Thermal maturity (Ro)

These geologic and reservoir properties are used to provide a first order overview of the
geologic characteristics of the major shale gas formations and to help select the shale gas

formations deemed worthy of more intensive assessment.
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Figure 2-1: Southern Tunisia, Ghadames Basin Stratigraphic Columni

Assessment of International Shale Gas

(The two major shale gas formations, the Silurian Tannezuft and the Devonian Frasnian, are highlighted.)
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2.2. Establishing the Areal Extent of Major Shale Gas Formations.

Having identified the m ajor s hale gas formations, the next step is to undertake more
intensive study to define the areal extent for each of these formations. For this, the study team
searches the technical literature for regional as well as detailed, local cross-sections identifying
the shale gas formations of interest, as illustrated by Figure 2.2 for the Silurian and Devonian
shale gas formations in the Ghadames Basin. | n addition, the study team draws on i nternal
cross-sections previously prepared by Advanced Resources and, where necessary, assembles

well data to construct new cross-sections.

The regional cross-sections are used to define the lateral extent of the shale formation in

the basin and/or to identify the regional depth and gross interval of the shale formation.

Figure 2.2 : Ghadames Basin Structure Depth Map and Cross Section

(The geological ages containing the two major shale gas formations, the Devonian and the Silurian, are highlighted.)
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3. Defining the Prospective Area for Each Shale Gas Formation.

An important and challenging resource assessment step is to establish the portions of
the basin that, in our view, are deemed to be prospective for development of shale gas. The

criteria used for establishing the prospective area include:

» Depositional Environment. An important criterion is the depositional environment of

the shale, particularly whether it is marine or non-marine. Marine-deposited shales
tend to have lower clay content and tend to be high in brittle minerals such as quartz,
feldspar and carbonates. B rittle shales respond favorably to hydraulic stimulation.
Shales deposited in non-marine settings (lacustrine, fluvial) tend to be higher in clay,

more ductile and less responsive to hydraulic stimulation.

Figure 2.3 provides a ternary diagram useful for classifying the mineral content of the
shale for the Marcellus Shale in Lincoln Co., West Virginia. Figure 2.4 illustrates the
relationship bet ween s hale f ormation mineralogy, shale brittleness and shale

response to hydraulic fracturing.

Figure 2.3. Ternary Diagram of Shale Mineralogy (Marcellus Shale).

Quartz (Q)

Calcite (C) Clay (Cly)

Source: Modified from AAPG Bull. 4/2007, p. 494 & 495
JAF028263.PPT
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Figure 2.4. Relationship of Shale Mineralogy (Q, C and Cly) and Thermal Maturity to Gas Flow
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= Depth. The depth criterion for the prospective area is greater than 1,000 meters, but
less than 5, 000 meters ( 3,300 feetto 16,500 feet). A reas s hallower than 1, 000
meters have lower pressure and a lower gas concentration. In addition, shallow
shale g as formations h ave risks o f hi gher w ater c ontent i n t heir nat ural fracture
systems. Areas deeper than 5,000 m have risks of reduced permeability and much

higher drilling and development costs.

» Total Organic Content (TOC). In general, the TOC of prospective area needs to be

equal to or greater than 2%. Figure 2.5 provides an example of using a gamma ray
log to identify the TOC content for the Marcellus Shale in the New York (Chenango
Co.) portion of the Appalachian Basin.

Organic m aterials such as microorganism fossils and pl ant m atter providet he
requisite carbon, oxygen and hy drogen atoms needed to create natural gas and oil.
As such TOC is an i mportant measure of the gas g eneration potential of a s hale

formation.
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Figure 2.5. Relationship of Gamma Ray and Total Organic Carbon
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= Thermal Maturity. Thermal maturity measures the degree to which a formation has

been exposed to high heat needed to break down organic matter into hydrocarbons.
The reflectance of certain types of minerals (Ro%) is used as an indication of

Thermal Maturity, Figure 2.6.

The thermal maturity of the prospective area needs to have a Ro greater than 1.0%,
with a second higher quality prospective area defined as having a Ro greater than
1.3%. Higher thermal maturity settings also lead to the presence of nanopores which
contribute t o addi tional por osity i nt he s hale m atrix. F igure 2.7 p rovides an
illustration of the relationship between thermal maturity and the development of

nanopores in the shale matrix.

» Geographic Location. The prospective area is limited to the onshore portion of the

shale gas basin.
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Figure 2-6. Thermal Maturation Scale
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Figure 2-7. Thermal Maturity and Gas Storage Capacity
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The prospective area contains the higher quality portion of the shale gas resource and,
in general, covers less than half of the overall basin area. The prospective area will contain a
series of s hale g as q uality ar eas, t ypically including a g eologically f avorable, high r esource
concentration “ core area” and as eries o f | ower q uality and | ower r esource ¢ oncentration
extension areas. H owever, the further delineation o f t he prospective ar ea w as bey ond t he

scope of this initial resource assessment study.

The U .S. B arnett S hale i llustrates the p resence o fa hi gh quality “ core ar ea”, t wo
extension areas (called Extension Area #l and Extension Area #2) and a lower thermally less
mature (combination of oil, condensate and natural gas) play along the northern edge of the

basin, Figure 2.8.

Figure 2-8. Barnett Shale Resource and Play Areas
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A m ore det ailed r esource as sessment, i ncluding i n-depth app raisal o f new ly dr illed
exploration wells, with modern logs and rigorous core analyses, will be required to define these

next levels of resource quality and concentration for the major international shale gas plays.

JoN

Advanced Resources
International, Inc.

4. Estimating the Risked Gas In-Place (GIP).
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Detailed geologic and reservoir data are assembled to establish the free as well as the
adsorbed gas in-place (GIP) for the prospective area. Adsorbed gas can be the dominant in-
place resource for shallow and highly organically rich shales. Free gas becomes the dominant

in-place resource for deeper, higher clastic content shales.

a. Free Gas In-Place. The calculation of free gas in-place for a g iven areal extent
(acre, square mile) is governed, to a large extent, by four characteristics of the shale formation

- - pressure, temperature, gas-filled porosity and net organically-rich shale thickness.

» Pressure. The study methodology places particular em phasis on identifying areas
with ov erpressure, w hich enabl es a hi gher c oncentration of gas to be c ontained
within a fixed reservoir volume. A normal hydrostatic gradient of 0.433 psi per foot of

depth is used when actual pressure data is unavailable.

» Temperature. The study assembles data on the temperature of the shale formation,
giving particular emphasis on identifying areas with higher than average temperature
gradients and surface temperatures. A normal temperature gradient of 1° F per foot
of depth plus a surface temperature of 60° F are used when actual temperature data

is unavailable.

= Gas-Filled P orosity. The study assembles the por osity dat a from core or | og

analyses available in the public literature. When porosity data are not available,
emphasis is placed on i dentifying the mineralogy of the shale and i ts maturity for
estimating porosity values from analogous U.S shale basins. Unless other evidence

is available, the study assumes the pores are filled with gas and residual water.

= Net Organically-Rich Shale T hickness. T he overall shale interval is obtained from

prior stratigraphic studies of the formations in the basin being appraised. The
organically-rich thickness of the shale interval is established from log data and cross
sections, where available. A net to gross ratio is used to estimate the net thickness

of the shale from the gross organically-rich shale interval.

The above data are combined using established P VT reservoir engineering e quations
and conversion factors to calculate free GIP per square mile. The calculation of free GIP uses

the following standard reservoir engineering equation:
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43,560 * A hd(1- Sw)

GIP =
by
Where: B, = 0.028297T
A is area, in acres (with the conversion factors of 43,560 square feet per acre

and 640 acres per square mile).

h is net shale thickness, in feet (a minimum TOC criterion of 2% (by wt.) is used
to define the net organically-rich pay from the larger shale interval and the
gross organically-rich shale thickness.)

) is porosity, a dimensionless fraction (the values for porosity are obtained from
log or core information published in the technical literature or assigned by
analogy from U.S. shale gas basins; the thermal maturity of the shale and its
depth of burial can influence the porosity value used for the shale).

(1-Sw) is the fraction of the porosity filled by gas (Sg) instead of water (Sy), a
dimensionless fraction (the established value for porosity (¢) is multiplied by
the term (1-Sy) to establish gas-filled porosity; the value Sw defines the
fraction of the pore space that is filled with water, often the residual or
irreducible reservoir water saturation in the natural fracture and matrix
porosity of the shale; liquids-rich shales may also contain condensate and/or
oil (So) in the pore space, further reducing gas-filled porosity.

P is pressure, in psi (pressure data is obtained from well test information
published in the literature, inferred from mud weights used to drill through the
shale sequence, or assigned by analog from U.S. shale gas basins; basins
with normal reservoir pressure are assigned a gradient of 0.433 psi per foot
of depth; basins with indicated overpressure are assigned pressure gradients
of 0.5 to 0.6 psi per foot of depth; basins with indicated underpressure are
assigned pressure gradients of 0.3 to 0.4 psi per foot of depth).

T is temperature, in degrees Rankin (temperature data is obtained from well
test information published in the literature or from regional temperature
versus depth gradients; the factor 460 °F is added to the reservoir
temperature (in °F) to provide the input value for the gas volume factor (B,)
equation).

B, is the gas volume factor, in cubic feet per standard cubic feet and includes
the gas deviation factor (z), a dimensionless fraction. (The gas deviation
factor (z) adjusts the ideal compressibility (PVT) factor to account for non-
ideal PVT behavior of the gas; gas deviation factors, complex functions of
pressure, temperature and gas composition, are published in standard
reservoir engineering text.)
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b. Adsorbed Gas In-Place. In additiont o free g as, shales can ho Id significant

quantities of gas adsorbed on the surface of the organics (and clays) in the shale formation.

A Langmuir isotherm is established for the prospective area of the basin using available
data on TOC and on t hermal maturity to establish the Langmuir volume (V) and the Langmuir

pressure (P.).

Adsorbed gas in-place is then calculated using the formula below (where P is original

reservoir pressure).
Gc=(V.*P)/(P.+P)

The above gas content (G¢) (typically measured as cubic feet of gas perton of net

shale) is converted to gas concentration (adsorbed GIP per square mile) using actual or typical
values for shale density. (Density values for shale are typically in the range of 2.65 to 2.8 gm/cc

and depend on the mineralogy and organic content of the shale.)

The estimates of the Langmuir value (V) and pressure (P,) for adsorbed gas in-place
calculations are based on either publically available data in the technical literature or internal
(proprietary) dat a dev eloped by Advanced Resources from prior work on v arious U.S. and

international shale basins.

In general, the Langmuir volume (V) is a function of the organic richness and thermal
maturity of the shale, as illustrated in Figure 2.9. T he Langmuir pressure (P) is a function of
how readily the adsorbed gas on the organics in the shale matrix is released as a function of a

finite decrease in pressure.

The free gas in-place (GIP) and adsorbed GIP are combined to estimate the resource
concentration (Bcf/mi?) for the prospective area of the shale gas basin. Figure 2.10 illustrates
the relative contributions of free (porosity) gas and adsorbed (sorbed) gas to total gas in-place,

as a function of pressure.
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Figure 2-9. Marcellus Shale Adsorbed Gas Content

Adsorbed Gas Content: Lower TOC
(Gas Content in scf/ton vs pressure)

Adsorbed Gas Content: Higher TOC
(Gas Content in scf/ton vs pressure)
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c. Establishing the Success/Risk Factors. Two specific judgmentally es tablished

success/risk factors are used to estimate risked GIP within the prospective area of the shale gas

formation. These two factors, are as follows:

Play Success P robability Fac tor. T he s hale gas pl ay s uccess pr obability f actor

captures t he likelihood t hat at| east s ome s ignificant por tion of the s hale g as
formation will provide gas at attractive flow rates and bec ome developed. C ertain
shale gas formations, such as the Muskwa Shale/Otter Park in the Horn River Basin
are al ready under dev elopment and thus would hav e a pl ay pr obability f actor of
100%. M ore s peculative s hale gas formations with limited g eologic and reservoir

data, may only have a play success probability factor of 30% to 40%.

As exploration wells are drilled, tested and produced and information on the viability

of the shale gas play is established, the play success probability factor will change.

Prospective Area Success (Risk) Factor: The prospective area success (risk) factor

combines a series of concerns that could relegate a portion of the prospective area
to be uns uccessful or unproductive f or g as pr oduction. T hese c oncerns i nclude
areas with high structural complexity (e.g., deep faults, upthrust fault blocks); areas
with lower thermal maturity (Ro between 1.0 and 1.2); the outer edge areas of the
prospective area with lower net organic thickness; and other information appropriate

to include in the success (risk) factor.

The prospective ar ea s uccess (risk) factor al so c aptures the am ount of av ailable
geologic/reservoir data and the extent of exploration that has occurred in the
prospective area of the basin to determine what portion of the prospective area has
been sufficiently “de-risked”. As exploration and delineation proceed, providing a
more rigorous definition of the prospective area, the prospective area success (risk)

factor will change.

These t wo success/risk f actors ar e c ombined t o derive a s ingle composite s uccess

factor with which to risk the GIP for the prospective area. Appendix B provides a t abulation of

the play success probability and prospective area success factors assigned to each of the major

shale gas basins included in this resource assessment.
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As i ntroduced abov e, t he hi story o fs hale gas exploration has s hownt hatt he
success/risk factors, particularly the prospective area success/risk factor, change over time. As
exploration wells ar e drilled and t he favorable s hale gas reservoir s ettings and pr ospective
areas are more fully established, it is likely that larger assessments of the gas in-place will

emerge.

6. Estimating the Technically Recoverable Resource.

The technically recoverable resource is established by multiplying the risked GIP by a
shale g as r ecovery f actor, w hich i ncorporates a num ber o f geological i nputs and anal ogs
appropriate to each shale gas basin and formation. The recovery factor uses information on the
mineralogy of the shale to determine its favorability for applying hydraulic fracturing to “shatter”
the shale matrix. The recovery factor also considers other information that would impact gas
well productivity, such as: presence of favorable micro-scale natural fractures; the absence of
unfavorable deep cutting faults; the state of stress (compressibility) for the shale formations in
the prospective area; the relative volumes of free and ads orbed gas concentrations; and t he

reservoir pressure in the prospective area.

Three basic gas recovery factors, i ncorporating s hale mineralogy, reservoir properties

and geologic complexity, are used in the resource assessment.

» Favorable Gas Recovery. A 30% recovery factor of the gas in-place is used for

shale g as ba sins and formations that hav e | ow c lay ¢ ontent, | ow t o m oderate
geologic c omplexity and favorable r eservoir pr operties s uch as an ov erpressured

shale formation and high gas-filled porosity.

» Average Gas Recovery. A 25% recovery factor of the gas in-place is used for shale

gas basins and formations t hat have a m edium clay c ontent, m oderate g eologic

complexity and average reservoir pressure and properties.

= Less Favorable Gas Recovery. A 20% recovery factor of the gas in-place is used for

shale gas basins and formations that have medium to high clay content, moderate to

high geologic complexity and below average reservoir properties.

A recovery factorof 35% is applied in a few e xceptional c ases with es tablished high
rates of well performance. A recovery factor of 15% is applied in exceptional cases of severe

under-pressure and reservoir complexity.
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Finally, shale gas basins and formations that have very high clay content (e.g., non-
marine shales) and/or have very high geologic complexity (e.g., thrusted and high stress) are
categorized as non-prospective and excluded from this shale gas resource assessment.
Subsequent, more intensive and smaller-scale (rather than regional-scale) resource
assessments may identify the more favorable areas of a basin, enabling portions of the basin
currently deem ed non -prospectivet o be add edt o the s hale gasr esource as sessment.
Similarly, advances in well completion practices may enable more of the very high clay content
shale formations to be e fficiently stimulated, also enabling these basins and f ormations to be

added to the resource assessment.

a. Two Key Gas Recovery Technologies. Because the native permeability of the
shale gas reservoir is extremely low, on the order of a few hundred nano-darcies (0.0001 md to
0.001 md), efficient recovery of the gas held in the shale matrix requires two key well drilling and

completion techniques, as illustrate by Figure 2.11:

Figure 2-11. Lower Damage, More Effective Horizontal Well Completions Provide Higher Reserves Per Well

Initial Barnett Shale Well Completions
(1,500 foot horizontal well with 5 stage frac)

Latest Barnett Shale Well Completions

(3,000 foot horizontal well with 12 stage frac)
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» Long Horizontal Wells. Long horizontal wells (laterals) are designed to place the gas

production well in contact with as much of the shale matrix as technically and

economically feasible.

» Intensive W ell Stimulation. Large volume hydraulic stimulations, conducted in

multiple, closely spaced stages (up to 20), are used to “shatter” the shale matrix and
create a permeable reservoir. This intensive set of induced and propped hydraulic
fractures provided the critical flow paths from the shale matrix to the horizontal well.
Existing, s mall s cale n atural fractures ( micro-fractures) w ill, i f open , ¢ ontribute

additional flow paths from the shale matrix to the wellbore.

The efficiency of the hydraulic well stimulation depends greatly on the mineralogy of the

shale, as further discussed below.

b. Importance of Mineralogy on Recoverable Resources. The mineralogy of the
shale, particularly its relative quartz, carbonate and clay content, significantly determines how

efficiently the induced hydraulic fracture stimulates the shale, as illustrated by Figure 2.12:

» Shales with a hi gh percentage of quartz and c arbonate tend to be b rittle and w ill
“shatter”, leading to a vast array of small-scale induced fractures providing numerous
flow paths from the matrix to the wellbore, when hydraulic pressure and energy are

injected into the shale matrix, Figure 2.12A.

= Shales with a high clay content tend to be ductile and to deform instead of shattering,
leading to relatively few induced fractures (providing only limited flow paths from the
matrix to the well) when hydraulic pressure and energy are injected into the shale

matrix, Figure 2.12B.
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Figure 2-12. The Properties of the Reservoir Rock Greatly Influence the Effectiveness of Hydraulic
Stimulations.

High clastic content shales are brittle and shatter, providing multiple
dentrict fracture swarms. High clay content shales are plastic and absorb energy,
providing single-planar fracs.

12A. Quartz-Rich (Brittle) 12B. Clay-Rich (Ductile)

Quartz-rich

Cretaceous Shale

Source: CSUG, 2008

JAF028263.PPT

c. Significance of Geologic Complexity. A variety of complex geologic features can
reduce the gas recovery efficiency from a shale gas basin and formation:

» Extensive Fault Systems. A reas with extensive faults can hinder gas recovery by

limiting the productive length of the horizontal well, as illustrated by Figure 2.13.

» Deep Seated Fault System. V ertically extensive faults that cut through organically
rich s hale i ntervals ¢ an i ntroduce w ater i nto t he shale m atrix, r educing r elative

permeability and gas flow capacity.

= Thrust Faults and O ther High Stress Geological Features. C ompressional t ectonic
features, such as thrust faults and up thrusted fault blocks, are an indication of basin
areas with high lateral reservoir stress, reducing the permeability of the shale matrix

and its gas flow capacity.
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Figure 2-13. 3D Seismic Helps Design Extended vs. Limited Length Lateral Wells
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SUMMARY

The step-by-step application of the above discussed shale gas resource assessment

methodology leads to three key assessment values for each major shale gas formation:

» Gas In-place C oncentration, r eported i n terms of B cf per square mile. T his key
resource as sessment value defines the richness of the shale gas resource and i ts

relative attractiveness compared to other gas development options.
» Risked Gas In-Place, reported in Tcf for each major shale gas formation.
» Risked Recoverable Gas, reported in Tcf for each major shale gas formation.

The risked gas in-place and recoverable gas provide the two “bottom line” values that
help the reader understand how large is the prospective shale gas resource and what impact
this resource may have on t he energy, particularly the natural gas supply, options available in
each region and country.
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Table 2-1, constructed for two major shale gas basins and f our shale gas formations,
provide a concise summary of the resource assessment conducted for Central North Africa.

Additional detail is provided in each of the 14 regional shale gas resource assessment reports.

These i ndividual r eports al so al locate the risked s hale gas i n-place an d r ecoverable
shale gas resource to the various countries holding the assessed shale gas basins. For
example, the assessment report for Central North Africa further details the shale gas resource

(reported at the basin- and formation-level in T able 2-1) to the three countries holding these

resources - - Algeria, Libya and Tunisia.

Table 2-1: Reservoir Properties and Resources of Central North Africa

° Basin/Gross Area Ghadames Basin (121,000 mi?) Sirt Basin (177,000 mi?)
g g Shale Formation Tannezuft Frasnian Sirt-Rachmat Etel
Geologic Age Silurian Middle Devonian [[Upper Cretaceous| Upper Cretaceous
w2 Prospective Area (miz) 39,700 12,900 70,800 70,800
g Interval 1,000 - 1,800 200 - 500 1,000 - 3,000 200 - 1,000
& |Thickness (ft) |Organically Rich 115 197 2,000 600
S Net 104 177 200 120
z Interval 9,000- 16,500 | 8,200 - 10,500 9,000 - 11,000 11,000 - 13,000
o  |Depth (ft)
Average 12,900 9,350 10,000 12,000
£ & |Reservoir Pressure Overpressured | Overpressured Normal Normal
2 © [Average TOC (wt. %) 5.7% 4.2% 2.8% 3.6%
§ S |Thermal Maturity (%Ro) 1.15% 1.15% 1.10% 1.10%
€ o Clay Content Medium Medium Medium/High Medium/High
§ GIP Concentration (Bcfimi?) 4 65 61 42
o  |Risked GIP (Tcf) 520 251 647 443
& [Risked Recoverable (Tcf) 156 75 162 111
REFERENCES
i Acheche, et al., 2001.
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L. CANADA

The gas-bearing shales of Canada are concentrated in Alberta and British Columbia of

Western Canada and in Quebec, Nova Scotia and New Brunswick of Eastern Canada.

WESTERN CANADA

Western C anada has five | arge s edimentary b asins t hat ¢ ontain thick, or ganic-rich
shales - - the Horn River, Cordova Embayment and Liard in northern British Columbia; the Deep
Basin/Montney in central Alberta and B ritish Columbia; and the Colorado Group in central and
southern Alberta, Figure I-1.

Figure I-1. Shale Gas Basins of Western Canada

Horn River
Basin

Deep Basin
Doig Subcrop
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The five large Western Canada shale gas basins contain a total of 1,326 Tcf of risked

gas i n-place.

(This as sessment i s c onsistent with t he British C olumbia M inistry of E nergy,

Mines and Petroleum Resources estimates of 500 Tcf of gas in-place for the Horn River Shale,

200 Tcf of gas in-place for the Cordova Embayment Shale and 35 to 250 Tcf of gas in-place for

the Montney Resource Play, a combined shale gas and tight gas sand play.)’

The risked, technically recoverable shale gas resource for these five Western Canada

basins is estimated at 355 Tcf, as shown on Table |-1.

Table I-1. Shale Gas Reservoir Properties and Resources of Western Canada

8 . . " Cordova . -
& Basin/Gross Area Horn Riveri(8,100 mi?) (4,290 mi) Liardi(4,300 mi?)
(%]
E Shale Formation Muskwa/Otter Park Evie/Klua Muskwa/Otter Park( Lower Besa River
Geologic Age Devonian Devonian Devonian Devonian
w2 Prospective Area (miz) 3,320 3,320 2,850 1,940
.2 Interval 250 - 730 110 - 205 150 - 350 490 - 1,100
; Thickness (ft) |Organically Rich 420 160 230 630
£ Net 380 144 207 441
z Interval 6,300 - 10,200 6,800 - 10,700 5,500 - 6,200 6,600 - 12,300
o |Depth (ft)
Average 8,000 8,500 6,000 9,000
= % |Reservoir Pressure Moderately Moderately Normal Moderately
S & Overpressured Overpressured Overpressured
g & Average TOC (wt. %) 3.5% 3.5% 2.0% 3.5%
& g Thermal Maturity (%Ro) 3.80% 3.80% 2.50% 3.80%
Clay Content Low Low Low Low
g GIP Concentration (Bcflmiz) 152 55 61 161
2  |Risked GIP (Tcf) 378 110 83 125
& |Risked Recoverable (Tcf) 132 33 29 31
February 17, 2011
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& . . - Colorado Group
B Basin/Gross Area Deep Basin (2,650 mi?) (124,000 mP?)
(=)
a Shale Formation Montney Shale | Doig Phosphate |2WS & Fish Scales
@ Geologic Age Triassic Triassic Cretaceous
e Prospective Area (miz) 1,900 3,000 48,750
g Interval 200 - 1,100 70-220 300 - 2,000
w Thickness (ft) |Organically Rich 400 165 923
S Net 240 150 105
_E" Depth (f) Interval 3,000 - 9,000 6,800 - 10,900 5,000 - 10,000
P Average 6,000 9,250 6,900
= ¢ |Reservoir Pressure Overpressured Moderately Underpressured
et Overmpressured
g U |Average TOC (wt. %) 3.0% 5.0% 2.4%
= E Thermal Maturity (%Ro) 1.50% 1.10% 0.61%
Clay Content Low Low Low
S |GIP Concentration (Bcfimi?) 99 67 21
§ Risked GIP (Tcf) 141 81 408
& [Risked Recoverable (Tcf) 49 20 61

Horn River Basin

Geologic Characterization. The Horn River B asin covers anar eaof 8,100 mi® in
northern British Columbia and the Northwest Territory. Its western border is defined by the
regionally significant Bovie Fault, which separates the Horn River Basin from the Liard Basin.
Its northern border, in Northwest Territory, is defined by the thinning of the shale section and by
lack of data. Its southern border is defined by the shallowing and pinch-out of the shale. Its
eastern bo rder i s de fined by Slave Point/Keg River Up lift and thinning of the s hale. The
prospective ar ea f or Muskwa/Otter P ark Shale covers a 3, 320 mi? area al ong t he w estern

portion of the basin, Figure |-2.
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Figure I-2. Horn River (Muskwa/Otter Park Shale) Basin and Prospective Area
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The Horn River, as well as t he ot hert wo north B ritish C olumbia shale g as basins
(Cordova Embayment and Liard Basin), contains a stack of organic shales, with the Middle
Devonian-age Muskwa/Otter Park and E vie/Klua most prominent, Figure I-3. These two shale
units were mapped in the Horn River Basin to establish the prospective area with sufficient
thickness and resource concentration favorable for shale gas development. Other shales in this
basin include the high organic content but lower thermal maturity Mississippian E xshaw/Banff

Shale and the thick but low organic content Late Devonian Fort Simpson Shale.
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Figure I-3. NE British Columbia, Devonian and Mississippian Stratigraphy
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Reservoir Properties (Prospective Area)

Muskwa/Otter Park (Middle Devonian). The Middle Devonian Muskwa/Otter Park black

shale, the upper shale interval within the Horn River Group, is the main shale gas target in the

Horn River Basin. Dirilling depth to the top of the Muskwa Shale ranges from 6,300 to 10,200
feet, averaging 8,000 feet for the prospective area. The Muskwa/Otter Park shale is moderately
over-pressured in the center of the basin. The organically-rich gr oss t hickness of 420 feet
covers much of the overall Muskwa/Otter Park interval of 500 feet, with a net thickness of 380
feet. Total organic content (TOC) in the prospective area averages 3.5% (by wt.) for the net
shale thickness investigated. Thermal maturity (R,) is high, averaging about 3.8%, placing this
shale gas inthedrygas window. Because of t he high t hermal m aturity (high R ,) in the
prospective area, the gas has a CO, content of 10%. The Muskwa/Otter Park Shale has a high

quartz/low clay content, favorable for hydraulic stimulation.

Evie/Klua ( Middle Devonian). The Middle Devonian Evie/Klua black shale, the lower
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shale interval within the Horn River Group, provides a secondary shale gas target in the Horn
River Basin. T he top of the E vie/Klua s hale i s appr oximately 500 feet below the top of the
Muskwa/Otter Park Shale, separated by an organically lean rock interval. T he organically-rich
Evie/Klua shale thickness, with an average TOC of 3.5%, is about 160 feet (gross) and 144 feet
(net). T hermal m aturity (R,)is high, atabout 3.8%, placing t his shale gas in thedry gas

window, with potential for the presence of CO,. The Evie/Klua Shale has a low clay content.

Other Shales. The Horn River Basin also contains two shallower shales - - the Upper
Devonian/Lower Mississippian Exshaw Shale and the Late Devonian Fort Simpson Shale. The
Exshaw Shale, while rich in TOC (5%) is relatively thin (10 to 30 feet). The shallower portions of
the E xshaw S hale app earto be i nthe gas condensate window. T he m assively t hick For t
Simpson shale, with an interval of 2,000 to 3,000 feet, is organically lean (TOC <1%). Because
of less favorable reservoir properties and | imitations of data, these two s hale units hav e not

been included in the assessment.

Resources. The prospective ar ea for both the H orn River Muskwa/Otter P ark and
Evie/Klua s hales i s approximately 3,320 mi?. W ithin t his pr ospective ar ea, the Horn Riv er
Muskwa/Otter Park shales have a rich resource concentration of about 152 Bcf/mi?. A's such,
therisked gasin-placeis 378 Tcf. Based o n favorable r eservoir mineralogy and o ther
properties, we estimate a risked technically recoverable shale gas resource of 132 Tcfin the
Muskwa/Otter Park Shale. The thinner Evie/Klua Shale has a resource c oncentration of 55
Bcf/mi?, and 110 Tcf of risked gas in-place with 33 Tcf as risked technically recoverable,
Table I-1.

Activity. The gas processing capacity in the Horn River Basin is being expanded to
provide i mproved m arket ac cess to s hale g as production from this basin. For example, the
Cabin Gas Plant, with 800 MMcfd of capacity, is due ons treamin Q3 of 2012 and t he Fort
Nelson Gas Plant is being expanded to 1 Bcfd. Pipeline infrastructure is also being expanded to
bring the gas south to the Deep Basin and then to the Kitimat LNG export plant on the Pacific
coast of British Columbia, due on line in 2014. A 287-mile Pacific Trail Pipeline would connect
the Kitimat LNG export plant with S pectra E nergy’s West C oast Pipeline S ystem, Figure 1-4.
The Kitimat LN G terminal has an announ ced s end-out capacity of 5 million tons of LNG per

year.
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Figure I-4. Horn River LNG Export Pipeline and Infrastructure
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A number of major and independent companies are active in the Horn River Shale Play.
For example, EnCana plans to drill 41 long horizontal wells as part of their 2010 joint program
with Apache to achieve a year-end exit rate of 100 MMcfd, net to EnCana. Devon is in the early
stages of de-risking its 170,000 net acre lease position, projected to hold nearly 10 Tcfe of net
risked resource. The company plans to drill 7 horizontal wells in 2010. EOG has acquired a
157,000 net acre lease position, with potential recoverable resources of 9 Tcf. Its two significant
pilot/development ar eas hav e book ed 850 B cf of p roved r eserves, as of the end o f2009.
Quicksilver has a 130 ,000 net ac re | ease po sition w ith a pr ojected recoverable resource
potential of over 10 Tcf. Nexen has drilled 18 horizontal wells, establishing production capacity
of 100 MMcfd.

Cordova Embayment

Geologic Characterization. The Cordova Embayment covers an area of 4,290 mi’ in

the extreme northeastern corner of British Columbia, extending into the Northwest Territory. It
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is separated from the Horn River Basin on the west by the Slave Point Platform. Its northern
and southern boundaries are defined by a thinning of the shale. Its eastern boundary is a facies
change along the British Columbia and Alberta borders. The dominant shale gas formation, the
Muskwa/Otter Park Shale was m apped t o es tablish t he 2,850 m i’ prospective ar ea w ith

minimum thickness for favorable shale gas development, Figure I-5.

Reservoir Properties (Prospective Area)

Muskwa/Otter Park. The Middle Devonian Muskwa/Otter Park Shale is the main shale

gas target in the Cordova Embayment. The drilling depth to the top of the Muskwa Shale in this
basin ranges from 5,500 t o 6, 200 f eet, av eraging 6,000 feetin the prospective area. The
reservoir pressure is normal. The organically-rich gr oss t hickness is 230 feet, with a net
thickness of 207 feet. Total organic content (TOC) in the prospective area is 2.5% for the net
shale thickness investigated. Thermal maturity averages 2.0% R,, placing the shale in the dry
gas window. The Muskwa/Otter Park Shale has a moderately high quartz content, favorable for

hydraulic stimulation.

Other S hales. The de eper, relatively t hin E vie/Klua Shale i s s eparated fromt he
overlying Muskwa/Otter Park by the Slave Point and Sulfur Point Formations, Figure I-6. T he
overlying Exshaw and Fort Simpson shales are shallower, thin or low in organics. These shales

have not been included in the assessment.

Resources. The prospective area of the Cordova Embayment Muskwa/Otter Park
Shale is approximately 2,850 mi®>. Within this prospective ar ea, the s hale has a moderate
resource concentration of 61 Bcf/miZ. As such, the shale gas in-place is 83 Tcf risked. Based
on favorable reservoir mineralogy and other properties, we estimate a risked technically

recoverable shale gas resource of 29 Tcf for the Cordova Embayment, Table I-1.

Activity. Nexen has acquired a 38,000-acre lease position in the Cordova Embayment
and has drilled one new exploration well. Penn West Energy Trust and Mitsubishi have formed
a joint venture to develop the estimated 5 to 7 Tcf of recoverable shale gas resources on their

120,000-acre (gross) lease area, planning to drill 5 wells in 2010.
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Figure I-5. Cordova Embayment (Muskwa/Otter Park Shale) Outline and

Prospective Area
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Figure I-6. Cordova Embayment Stratigraphic Column
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Liard Basin

Geologic Characterization. The Liard Basin covers and area of 4,300 mi? in northern
British Columbia. Its eastern border is defined by the Bovie Fault, which separates the Liard
Basin from the Horn River Basin, Figure |-7. Its northern boundary is currently defined by the
British Columbia and the Yukon/Northwest Territories border. Its western and southern
boundaries are defined by structural folding.

Figure I-7. Liard Basin Location, Cross Section and Prospective Area
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The dominant shale gas formation in the Liard Basin is the Middle Devonian-age Lower
Besa River Shale, equivalent to the Muskwa/Otter Park and Evie/Klua shales in the Horn River
Basin. Additional, less organically-rich and less prospective shales exist in the basin’s Upper
Devonian- and Mississippian-age shales, such as the Middle Besa River Shale (Fort Simpson
equivalent) and the Upper Besa River Shale (Exshaw/Banff equivalent), see Figures I-3 and I-8.
The prospective area for the Lower Besa River Shale covers a 1,940 mi® area along the eastern

portion of the basin, Figure 1-9.
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Figure I-8. Liard Basin Stratigraphic Cross Section
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Figure I-9. Liard Basin and Prospective Area (Lower Besa River Shale)
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Reservoir Properties (Prospective Area)

Middle D evonian (Lower Besa River). The Lower Besa River organically-rich shale is

the main shale gas target in the Liard Basin. Drilling depths to the top of the formation in the
prospective area range from 6,600 to 12,300 feet, averaging about 9,000 feet. The organically-
rich Lower Besa River section has a gross thickness of 630 feet and a net thickness of 441 feet.
Total organic content (TOC) in the prospective area can reach as high as 5%, averaging 3.5%
for the net shale interval investigated. The thermal maturity of the prospective area is high, with
an average R, of 3.8%. The geology of the Besa River Shale is complex, with numerous faults
and thrusts. The Lower Besa River Shale is quartz-rich (40% to >80%), with episodic intervals

of dolomite and more pervasive intervals of clay.

Resources. ThelLi ard B asin’'s Low er B esa R iver S hale has ahi ghr esource
concentration of 161 Bcf/mi®. Given a prospective area of 1,940 mi?, the risked shale gas in-
place is approximately 125 Tcf. Based on relatively favorable reservoir mineralogy but
significant s tructural c omplexity, we es timate ar isked technically recoverable s hale g as

resource of 31 Tcf for the Liard Basin, Table I-1.
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Exploration Activity. Transeuro Energy Corp. and Questerre Energy Corp., two small
Canadian oper ators. ha ve drilled and ¢ ompleted t hree ex ploration w ells pr oducing from the
Besa River and Mattson shale/siltstone intervals at the Beaver River Field. The gas is being
sold into the existing gas gathering and pipeline system, initially built for the conventional gas
play in this area. In addition, Nexen has recently acquired a large 170,000-acre lease position

in this basin.
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Deep Basin

Geologic Characterization. The Deep Basin of Alberta and British Columbia covers a
massive area of over 54,000 mi? along the border of Alberta and British Columbia, Figure 1-10.
The basin contains the Montney and Doig Phosphate Resource plays, two large, multi-
depositional Triassic-age hydrocarbon resource accumulations containing over 1,000 Tcf of gas
in-place in conventional g as formations, tight gas sands and shale gas. (Separately, for a
private study, Advanced Resources previously assessed the Montney tight gas sand resource

in-place at over 500 Tcf).

A critical step for assessing the Montney Resource Play is establishing where to draw
the demarcation line between the shale gas and the tight gas resource areas. For this study,
we have designated the areas west of the Deformation Front as “shale gas dominant” and the

areas east of the Deformation Front as “tight gas dominant”, Figure I-11.

The M ontney Resource P lay is ov erlain by t he M iddle T riassic-age D oig Fo rmation,
incorporating the Diog Phosphate shale gas play, which reaches prospective thickness in the

western portion of the Deep Basin.

Reservoir Properties (Prospective Area)

Montney S hale ( Lower Tr iassic). The Low er Triassic M ontney S hale ¢ overs a

prospective ar ea o f app roximately 1, 900 mi? on t he nor thwestern ed ge of the D eep B asin,
Figure 1-12. Drrilling depth to the top of the Upper Montney Shale ranges from 3,000 to 9,000
feet, averaging 6,000 feet for the prospective area. T he interval from the top of the Upper
Montney to the base of the Lower Montney encompasses up to 1,000 feet, with an extensive
100- to 500-foot interval separating the two units, Figure I-13. The organically-rich gross
thickness for the Montney Shale averages 400 feet, with a net thickness of 240 feet. The total
organic content in the prospective area averages 3% for the net shale thickness. The thermal
maturity (R,) ranges from about 1.3% on the eastern edge of the shale play to 2.0% on the
western edge, placing the shale into the dry gas window. The Montney Shale has a favorable

quartz to clay ratio, making the formation attractive for hydraulic fracturing.
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Figure | -10. Deep Basin, Montney Resource Play, Base Map
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Figure I -11. Montney and Doig Resource Plays, Stratigraphy
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Figure | -12. Deep Basin, Montney Shale Prospective Area Figure I-13. Cutback Ridge — Montney Type Log
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Doig Phosphate Shales (Middle Traissic). The Middle Triassic Doig Phophate play has

a thick section of organically rich shale along the western edge of the Deep Basin that forms the
prospective area, Figure 1-14. Drilling depth to the top of the Doig Phosphate Shale averages
9,250 feet. The organic-rich D oig P hosphate ranges from 130 to 200 feet thick with ane t
thickness of 150 feet in the western prospective area. The thermal maturity (R, 1.1%) places
the shale in the wet gas window. T he total organic contact is moderate to high, averaging 5%
within the D oig P hosphate S hale. X-ray diffraction of cores taken from the D oig P hosphate
Formation show significant levels of quartz with minor to moderate illite clay and trace to minor

amounts of pyrite and dolomite, making the formation favorable for hydraulic fracturing.

Figure I-14. Doig Resource Play, Doig Phosphate Prospective Area
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Resources. The prospective area for the Montney Shale is estimated at 1,900 mi? and
the prospective area of the Doig Phosphate Shale is estimated at 3,000 mi?>. Within these
prospective ar eas, the s hales hav e m oderately-rich r esource ¢ oncentrations of abou t 100
Bcf/mi? for the Montney Shale and 67 Bcf mi? for the Doig Phosphate Shale. As such, the risked
shale gas in-place is 141 Tcf for the Montney Shale and 81 T cf for the Doig Phosphate Shale.
Based on favorable mineralogy and ac ompact pac kage of s hale, we es timate ar isked
technically recoverable shale gas resource of 49 Tcf for the Montney Shale and 20 Tcf for the

Doig Phosphate Shale.

Exploration Activity. A significant number of wells have been drilled into the Montney
and D oig Resource plays. The bulk of the wells have targeted the clastic- and siltstone-rich
tight gas intervals sourced by the organically-rich shales. An extensive system of existing gas

pipelines link the Deep Basin to Canadian and U.S. natural gas markets.

Colorado Group

Geologic Characterization. The Colorado Group Shales cover a massive, 124,000 mi®
square mile area in southern Alberta and s outheastern Saskatchewan. The western boundary
of the C olorado Group ist he C anadian R ockies O verthrust. T he northern and eas tern
boundaries are defined by shallow shale depth and |oss of net pay. The southern boundary is
the U.S./Canada border. The Colorado Group encompasses a thick, Cretaceous-age sequence
of sands, mudstones and shales. Within this sequence are two shale formations of interest for
natural gas development - - the Fish Scale Shale Formation in the Lower Colorado Group and
the Second White Speckled Shale Formation in the Upper Colorado Group, Figure 1-15. We
selected the 5,000 to 10,000 foot depth contours for defining the prospective area, to capture

the potential for both thermogenic as well as biogenic gas generation, Figure |-16.

Reservoir Properties (Prospective Area). In the prospective area, the depthtothe
Second White Speckled (2WS) and the Fish Scale shales ranges from 5,000 feet near Medicine
Hat (on the east) to over 10,000 feet in the west. The Fish Scale Shale is generally about 200
feet deeper than the 2WS. The interval from the top of the 2WS to the base of the Fish Scales
Shale ranges from 300 feet in the east to over 1,000 feet in the west, with an organically-rich
gross pay of 523 feet. We assume a c onservative net to gross ratio of 20%. Much of the
Colorado Group Shale appears to be underpressured at about 0.25 to 0.3 psi/ft. The total

organic carbon content of the shale ranges from 2% to 3%. In the prospective area, the thermal
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maturity of the shale is low (R, of 0.4% to 0.8%). However, the presence of biogenic gas plus
some low-temperature cracking of kerogen appear to have provided adequate volumes of gas
generation in the deeper portions of the basin. The rock mineralogy appearstobe lowto
moderate in clay (ductile clays and ot her m aterials of 31 %) and thus favorable for hy draulic

fracturing.

Resources. The potentially prospective area of the Colorado Group shale is 48,750 mi?,
covering much of southwestern Alberta. Within this prospective area, the shale has a relatively
low gas concentration of 21 Bcf/mi>. The shale gas in-place is 408 Tcf risked. Based on
potentially f avorable s hale m ineralogy, but ot her | ess favorable r eservoir properties such as
lower pressure and an uncertain gas charge, we estimate a risked technically recoverable shale

gas resource of 61 Tcf for the Colorado Group, Table I-1.

Exploration Activity. To date, the C olorado Group S hales hav e s een only | imited

exploration and development, primarily in the shallower eastern portion of the play area.
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Figure I-15. Colorado Group Stratigraphic Column Figure I-16. Colorado Group, Prospective Area
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EASTERN CANADA

Eastern Canada has four potential shale gas plays, namely - - the Utica and Lorraine
shales in the St. Lawrence Lowlands of the Appalachian Fold Belt of Quebec, the Horton Bluff
Shale in the Windsor B asin of northern N ova S cotia, and t he Frederick B rook S hale inthe
Moncton Sub-Basin of the Maritimes Basin in New Brunswick. These three shale gas basins
are in an early exploration stage. Therefore, only preliminary shale gas resource assessments
are offered for the Utica and Horton Bluff shales. Insufficient information exists for assessing

the Lorraine and Frederick Brook shales.

The two assessed Eastern Canada shale gas basins contain 164 Tcf of risked gas in-
(The Canadian S ociety f or U nconventional G as ( CSUG) ¢ ites an OGIP for

unconventional g as of 181 Tcf (unrisked) fort he Utica Shale.?)

place.
The risked, t echnically
recoverable resources for these two basins are estimated at 33 Tcf, Table I-2.

Table I-2. Gas Shale Reservoir Properties and Resources of Eastern Canada

. Appalachian Fold Belt| = Windsor Basin
S B Ar
& asin/Gross Area (3,500 mi) (650 mi?)
Q
§ Shale Formation Utica Horton Bluff
Geologic Age Ordovician Mississippian

2 Prospective Area (mi2) 2,900 524
§ Interval 1,000 - 3,000 500 - 1,000
& |Thickness (ft) [Organically Rich 1,000 500
S Net 400 300
>
< Interval 4,000 - 11,000 3,000 - 5,000
& [Pepth(®) 1 erage 8,000 4,000

= & [Reservoir Pressure Slightly Overpressured Normal

2 T |Average TOC (wt. %) 2.0% 5.0%

% §' Thermal Maturity (%Ro) 2.00% 2.00%

© a |Clay Content Low Unknown
g GIP Concentration (Bcflmiz) 134 82
2 [Risked GIP (Tcf) 155 9
« |Risked Recoverable (Tcf) 31 2

St. Lawrence Lowlands Basin (Quebec)/Utica Shale

Geologic Characterization. The Utica Shaleis located within the S t. Law rence
Lowlands and G aspe Peninsula of the Appalachian Fold Belt in Quebec, Canada, Figure 1-17.
The Uticais an U pper Ordovician-age s hale, | ocated above the c onventional Tr enton-Black

River Formation, Figure 1-18. A second, |less defined, thicker but lower T OC Lorraine Shale

A
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overlies the Utica. B ecause of limited data, the Lorraine Shale play is notincluded in this

assessment.

Figure I-17. Utica Shale Outline and Prospective Area
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Figure I-18. Utica Shale Stratigraphy
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Reservoir Properties (Prospective Area). The Utica Shale in Quebec is structurally
much more complex than the Utica Shale in the Appalachian Basin of New York. Three major
faults - - Yamaska, Tracy Brook and Log an’s Line - - form structural boundaries and par titions
for the Utica Shale play in Quebec. The extensive faulting and thrusting in the shale introduces
considerable ex ploration and ¢ ompletionrisk. T he depth tothe top of thes hale in the
prospective area ranges from 3,000 to over 11,000 feet, shallower along the southwestern and
northwestern boundaries and deeper along the eastern boundary. The thickness of the Utica
Shale interval ranges from 1,000 feet to over 3,000 feet, with an organically rich gross interval of
1,000 feet. With a net-to-gross ratio of 40%, the net organic-rich shale is estimated at 400 feet.
The t otal organic content (TOC)r angesfrom 1%t o3 %, witht he hi gher TOC v alues
concentrated in the Upper Utica Shale. The thermal maturity is high, ranging from R, of 1.1% to
4% and averaging 2%, placing the shale mostly in the dry gas window. Data on quartz and clay

contents are not publicly available.

Resources. The prospective area of the Utica Shale in Quebec is estimated at 2,900
mi.  Within this prospective area, the shale has arich gas concentration of 134 Bcf/mi®. As
such, the risked shale gas in-place is 155 Tcf. With moderate clay content, but severe geologic
complexity within the prospective area, we estimate a risked technically recoverable shale gas

resource of 31 Tcf for the Utica Shale.

Exploration Activity. Two s ignificant s ize oper ators, Talisman and Forest Oil, pl us
numerous s maller companies such as Questerre, Junex, Gastem and Molopo, hold leases in
the U tica S hales o f Quebec. A pproximately 25 exploration wells ha ve been dr illed with
moderate results. Market access is provided by the Maritimes and Northeastern pipeline as well

as the TransCanada Pipeline to markets in Quebec City and Montreal.

Windsor basin (Nova Scotia)/Horton Bluff Shale

Geologic Characterization. The Horton Bluff Shale is |ocated in north-central Nova
Scotia. It is an Early Mississippian Shale within the Horton Group, Figure 1-19. Because the
Horton Bluff Shale rests directly on the pre-Carboniferous, igneous and metamorphic basement,
it has experienced high heat flow and has a high thermal m aturity (R, of 1.5% to 2.5%) in

northern Nova Scotia. The Horton Bluff Shale geology is complex and faulted.
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Figure I-19. Horton and Frederick Brook Shale (Horton Group) Stratigraphy
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Reservoir Properties (Prospective Area). The regional extent of the Horton Shale
play is only partly defined as the basin and prospective area boundaries are highly uncertain. A
preliminary outline and prospective area of 524 mi? for the Horton Bluff Shale play is provided in
Figure 1-20. The depth of the prospective area ranges from 3,000 to 5,000 feet. The shale
interval is on the order of 500 to 1,000 feet thick with 500 feet of organic-rich gross pay and 300
feet of net pay. The TOC is 4% to 5% (locally higher). The thermal maturity of the prospective
shale area ranges from an R, of 1.1% in the south to an R, of over 2.5% in the northeastern
portion of the area, placing the bulk of the Horton Bluff Shale in the dry gas window. Data from
the Kennetcook #1, drilled to test the Horton Bluff shale in the Windsor Basin provided a portion

of the data on reservoir properties.
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Figure I-20. Preliminary Outline and Prospective Area for Horton Bluff Shale (Nova Scotia)
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Resource. The potentially prospective area of the Horton Bluff Shale in Nova Scotia is
524 mi®, covering the northern and eastern portions of the play area. Within this prospective
area, the shale has a resource concentration of 82 Bcf/mi?. As such, our preliminary estimate is
9 Tcf of risked shale gas in-place. Given the geologic complexity in the prospective area, we

estimate a risked technically recoverable shale gas resource of 2 Tcf for the Horton Bluff Shale.

Exploration Activity. Two small operators, Triangle P etroleum and Forent E nergy,

have acquired leases and have begun to explore the Horton Bluff Shale.
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Moncton Sub-Basin (New Brunswick)/Frederick Brook Shale

The Frederick Brook Shale is located in the Moncton Sub-Basin of the larger Maritimes
Basin of N ew B runswick, Figure I-21. This Mississippian-age s hale i s c orrelative with t he
Horton Group in Nova Scotia, Figure I-19. The Moncton Sub-Basin is bounded on t he east by
the Caledonia Uplift, on the west by the Kingston Uplift and on the north by the Westmoreland
Uplift, Figure [-22. Because of limited data, the definition of the prospective area of the

Frederick Brook Shale has not yet been established.

The Fr ederick B rook Shalei s s tructurally c omplex, w ith ex tensive f aulting a nd
deformation. Its depth ranges from about 3,000 feet along the basin’s eastern edges to 15,000
feetin the north. The total organic content of the shale ranges widely, from 1% to 10% and
typically from 3% to 5%. N o data are available on the mineralogy of the shale. The shales
thermal maturity ranges from immature R, < 1% in the shallower portions of the basin to highly

mature (R, > 2%) in the deeper western and southern areas.

Figure I-21. Location of the Moncton Sub-Basin
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Much of the data for this preliminary assessment of the Frederick Brook Shale is from
the M cCully g as field al ong t he s outhwestern edge o fthe Moncton Sub-Basin and f rom a
handful of vertical exploration wells. Other area, such as the Cocagne Sub-Basin, Figure |-22,

may also be prospective for the Frederick Brook Shale but have yet to be explored or assessed.

Figure I-22. Structural Controls for Moncton Sub-Basin (New Brunswick) Canada

o N -
: A / Northumberland
o AL — / Strait
Brunswick -f
| NEW BRUNSWICK PLATFORM
2 - ~ 105~
, Map location Q'ﬁ&\/ / ?ﬁﬁ/ Eheﬂl!ﬁ
Chipman eﬁw & 7 WESTMORLAND UPLIFT
p ol X Y
™ =
Minte = / ‘-’ Q@‘" &/ Moncton ged(\¢ -
L el / oy -
~ p
& o
& e
a,,sm e
VBB isborough @ Sackville
-
on Nova
WONC' Parkingale 37 0a Scolia
Carboriferous
! deep basins
i Carboniferous
shallow basins
E d talline
e - u;m;e crystalline

Source: P.K. Mukhopadhyay, Search and Discovery Article #10167 (2008)

February 17, 2011 A
1-28

Advanced Resaurces
International, Inc.



World Shale Gas Resources: An Initial Assessment

Natural Gas Profile

Canada is a major producer and a net exporter of natural gas. In 2009, Canada
produced 5,697 Bcf of natural gas, making it the world’s third largest producer of this resource.
Canada consumed 3,342 Bcf and exported 2,758 Bcf to the U.S. in 2009.

Overall nat ural gas p roduction i n 2009 dec lined by nearly 6% from 2 008, with g as
exports to the U.S. dropping below 3 T cf for the first time in this decade. M uch of Canada’s
natural gas production is concentrated in the Western Canada Sedimentary Basin, particularly
in the province of Alberta. C onventional natural gas production in Canada has been s teadily
declining, with coalbed methane, tight gas and more recently shale gas production helping stem

the decline.

Canada’s proved reserves of natural gas, which had been declining steadily, stabilized
at 58 Tcf in 2009.

Canada’s natural g as pipeline system is highly interconnected withthe U.S.  Within
Canada, TransCanada Pipeline operates a 25,600-mile network including the 13,900-mile, 10.6
Bcfd Alberta System and the 8,900-mile, 7.2 Bcfd Canadian Mainline. Spectra Energy operates
a 3,540-mile, 2.2 Bcfd pipeline system connecting western Canada gas supply regions with
markets in the U.S. and Canada. Spectra Energy also operates the Maritimes and Northeast

Pipeline linking eastern Canada gas supply with markets in the eastern U.S.

REFERENCES

* Adams, C., “British Columbia, A Leading Canadian Oil and Gas Province, New Shale Gas Opportunities in the Horn River
Basin, Montney and Other Basins”, British Columbia Ministry of Energy, Mines and Petroleum Resources, presented at NAPE
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Service Sector Workshop, June 22, 2010.
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II. MEXICO

INTRODUCTION

Thick, organic-rich and thermally mature source rock shales of Jurassic- and
Cretaceous-age occur in northeast and east-central Mexico, along the country’s onshore portion
of the Gulf of Mexico Basin, Figure II-1. These shales are time-correlative with gas productive

shales in the United States, including Eagle Ford, Haynesville, Bossier and Pearsall shales. !

However, compared with the shale belts of Texas and Louisiana, Mexico’s coastal shale
zone is narrower, less continuous and structurally much more complex. Regional compression
and thrust faulting related to formation of the Sierra Madre Ranges has narrowed Mexico’s
coastal plain, creating a series of partly prospective, discontinuous sub-basins.? Many of
Mexico’s largest conventional oil and gas fields have been discovered here, both onshore and
offshore. Conventional gas is produced mainly from sandstone reservoirs of Miocene and
Pliocene age sourced by deep, organic-rich and thermally mature Jurassic (Tithonian) and
Cretaceous-age shales. These deep source rocks are the principal targets for shale gas

exploration in Mexico.

Based on regional mapping and source rock characterization, Advanced Resources
(ARI) estimates that the five Mexico onshore basins assessed in this study contain
approximately 2,366 Tcf of geologically risked shale gas in-place, Table II-1. An estimated 681
Tcf (risked) is judged to be technically recoverable. Structural complexity (faulting and folding),
excessive depth (>5,000 m), and locally thin or absent shale on paleo highs constrain the
resource assessment. No shale gas leasing or exploration activity has been reported to have

occurred in these five basins.
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Figure ll-1. Onshore Shale Gas Basins of Eastern Mexico’s Gulf of Mexico Basin.

Cross-section locations are noted
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Table lI-1. Shale Gas Reservoir Properties and Resources of Mexico

§ Basin/Gross Area Burgos Basini(24,200 mi?) Sabinas Basin((23,900 mi?)
(%]
'E Shale Formation Eagle Ford Shale | Tithonian Shales | Eagle Ford Shale|Tithonian La Casita
Geologic Age L-M Cretaceous Upper Jurassic L-M Cretaceous Late Jurassic
w2 Prospective Area (miz) 18,100 14,520 12,000 12,000
g Interval 300 - 1,000 100 - 1,400 300 - 1,000 200 - 2,600
& |Thickness (ft) |Organically Rich 600 500 500 800
g Net 400 200 400 240
) Interval 3,390 - 16,400 5,000 - 16,400 5,000 - 12,500 9,800- 13,100
o Depth (ft)
Average 10,380 12,000 9,000 11,500
= 9 |Reservoir Pressure Normal Normal Underpressured | Underpressured
o5
S & [Average TOC (wt. %) 5.0% 3.0% 4.0% 2.0%
< g Thermal Maturity (%Ro) 1.30% 1.30% 1.30% 2.50%
Clay Content Low Low Low Low
g GIP Concentration (Bcflmiz) 209 75 113 58
2 [Risked GIP (Tcf) 1,514 272 218 56
« [Risked Recoverable (Tcf) 454 82 44 11
8 : Tampico Basin - Veracruz Basin
5 Basin/Gross Area (15,000 mi?) Tuxpan Platformi(2,810 mi?) (9,030 mi?)
(%)
E Shale Formation Pimienta Tamaulipas Pimienta Maltrata
Geologic Age Jurassic L-M Cretaceous Jurassic Upper Cretaceous
w2 Prospective Area (miz) 14,240 1,950 1,950 8,150
g Interval 16 - 650 50 - 500 400 - 1,000 0-600
' |Thickness (ft) [Organically Rich 490 300 490 300
g Net 245 225 245 120
) Interval 3,300 - 10,700 6,000 - 10,100 6,600 - 10,700 9,850 - 12,000
o |Depth (ft)
Average 6,200 7,900 8,500 11,200
= 2 |Reservoir Pressure Normal Normal Normal Normal
° s
§ o [Average TOC (wt. %) 3.0% 3.0% 3.0% 2.0%
& E Thermal Maturity (%Ro) 1.30% 1.25% 1.30% 1.50%
Clay Content Low Low Low Low/Medium
g GIP Concentration (Bcflmiz) 63 65 72 29
2 |Risked GIP (Tcf) 215 25 28 38
« |Risked Recoverable (Tcf) 65 8 8 9

In April 2010 PEMEX announced plans to drill Mexico’s first shale gas test well in

Coahuila state sometime during this year, while in August 2010 Pemex Director General Juan

Jose Suarez listed shale gas among Mexico’s "great future" untapped opportunities.
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GEOLOGIC CHARACTERIZATION
Regional Geology

Onshore eastern Mexico contains a series of medium-sized basins and structural highs
(platforms) within the larger western Gulf of Mexico Basin.® These structural features contain
organic-rich marine shales of Jurassic and Cretaceous age that may be prospective for shale
gas development. The accurate coastal shale belt includes the Burgos, Sabinas, Tampico,
Tuxpan Platform, and Veracruz basins and uplifts. While detailed geologic maps of these areas
generally are not publicly available, ARI constructed a general pattern of shale depth and

thickness from a wide range of published local-scale maps and cross sections.

Many of Mexico’s shale basins are too deep in their center for shale gas development
(>5 km), while their western portions tend to be overthrusted and structurally complex.
However, the less deformed eastern portions of these basins and adjacent shallower platforms
are structurally more simple. Here, the most prospective areas for shale gas development are

buried at suitable depths of 1 km to 5 km over large areas.

Pyrolysis geochemistry, carbon isotopic and biomarker analysis of oil and gas fields
identify three major Mesozoic hydrocarbon source rocks in Mexico’s Gulf Coast Basin: the
Upper Cretaceous (Turonian to Santorian), Lower-Mid Cretaceous (Albian-Cenomanian), and --
most importantly — Upper Jurassic (Tithonian), the latter having sourced an estimated 80% of
the conventional oil and gas discovered in this region.* These targets, particularly the Tithonian,

also appear to have the greatest potential for shale gas development, Figure II-2.

This section discusses the shale gas geology of the individual sub-basins and platforms
along eastern Mexico’s onshore Gulf of Mexico Basin. The basins discussed start in northern
Mexico near Texas moving to the south and southeastern regions close to the Yucatan

Peninsula.

February 17, 2011 I1-4 a

Advancod Resources
International, Inc.



World Shale Gas Resources: An Initial Assessment

Figure II-2. Stratigraphy of Jurassic and Cretaceous rocks in the Gulf of Mexico Basin, Mexico and USA.

Shale gas targets are highlighted.

Modified from Salvador, A. and Quezada-Muneton, J.M., 1989
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Burgos Basin

Overview. Located in northeast-most Mexico’s Coahuila state, directly south of the Rio
Grande River, the Burgos Basin is the southern extension of the Maverick Basin in Texas, the
latter hosting the highly productive Eagle Ford and Pearsall shale plays. The Burgos Basin

covers a total area of approximately 24,200 mi°.

Reservoir Properties (Eagle Ford Shale). Based on an analog with the Eagle Ford
Shale in Texas, ARI considers the Eagle Ford Shale in the Burgos Basin to be Mexico’s top-
ranked shale prospect. In the western margin of the Burgos Basin the Eagle Ford Shale gross
pay ranges from 100 to 300 m thick (average 200 m), Figure I-3.> Recognizing the sparse
regional depth and thickness control on the Eagle Ford Shale in the Burgos Basin®, we estimate
a prospective area of 18,100 mi? within the 1 km to 5 km depth window, Figure 1l-4, with a net
organically-rich shale thickness of 400 feet. The eastern section of the basin is excluded as the
shale is deeper than 5 km. Total organic content (TOC) is estimated at 5% (average) with a
mean vitrinite reflectance of 1.3% R,. Because reservoir pressure data were lacking; a
hydrostatic pressure gradient (0.43 psi/ft) was assumed. The surface temperature in this region

averages approximately 20°C, while the geothermal gradient typically is 23°C/km.

Resources (Eagle Ford Shale). Within its 18,100 mi? prospective area, the Eagle Ford
Shale exhibits a high resource concentration of 210 Bcfmi®. Risked shale gas in-place is 1,514

Tcf with a risked technically recoverable resource of 454 Tcf.
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Figure II-3. Stratigraphic Cross-Section Along the Western Margin of the Burgos Basin.

World Shale Gas Resources: An Initial Assessment

Section is flattened on top Cretaceous. The Eagle Ford Shale (EF) here ranges from about 100 to 300 m thick (average 200 m).
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Figure ll-4. Burgos Basin Outline and Shale Gas Prospective Area.
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Reservoir Properties (Tithonian Shale). The Upper Jurassic Tithonian Shale is the
other important petroleum source rock in the Burgos Basin. Extrapolating from the structure of
the younger Eagle Ford, the average depth of the Tithonian Shale is 12,000 feet, with a
prospective range of 5,000 to 16,400 feet. Gross thicknesses can be up to 1,400 feet, with an
organically-rich net pay of 200 feet. A moderate TOC of 3.0% and thermal maturity of 1.30% R,

are estimated for the Tithonian Shale.

Resources (Tithonian Shales). With a prospective area of 14,520 mi*, the Tithonian
Shale of the Burgos Basin has an average resource concentration of 75 Bcf/mi?. The risked

shale gas in-place is 272 Tcf with a risked technically recoverable resource of 82 Tcf.

Sabinas Basin

Overview. The Sabinas is one of Mexico’s largest onshore marine shale sub-basins,
extending over a total area of 23,900 mi? in the northeast part of the country, Figure II-5. The
Sabinas Basin is structurally quite complex, having been deformed into a series of tight, NW-SE
trending, evaporate-cored folds of Laramide origin called the Sabinas foldbelt. In addition,
withdrawal of Lower Jurassic salt during early Tertiary time induced an overprint of complex

salt-withdrawal tectonics.’

Much of the basin is probably too structurally deformed for shale gas development,
although a small area on the northeast side of the basin is more gently folded and may be
prospective. The Eagle Ford (Turonian) and the Late Jurassic La Casita Fm (Tithonian)? in this
basin appear to be the most prospective for shale gas development (The deltaic to continental

Cretaceous Olmos Shale appears to be rich in terrigenous clay and coals).

Reservoir Properties (Eagle Ford Shale). The Eagle Ford Shale (Turonian) is
distributed across the NW, NE, and central portions of the Sabinas Basin. It consists of a 300-m
thick sequence of black shales rhythmically interbedded with sandy limestone and carbonate-
cemented sandstone. We assume an organically-rich interval of 500 feet with 400 feet of net
pay. We have used the Eagle Ford Shale in the Maverick Basin of South Texas as the analog
for reservoir properties, using a TOC of 4%, a thermal maturity of 1.30% (R,) and moderate to
low gas-filled porosity. By extension of Burgos Basin data to the east, the average depth for the
prospective Eagle Ford is 9,000 feet. Based on reported data, we use an underpressured

gradient of 0.28 psi/ft for the Sabinas Basin.
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Figure lI-5. Sabinas Basin Outline and Shale Gas Prospective Area.
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Resources (Eagle Ford Shale). Within a prospective area of 12,000 mi?, the Eagle
Ford Shale of the Sabinas Basin has a resource concentration of 113 Bcf/mi®. The risked shale

gas in-place is estimated at 218 Tcf, with a risked technically recoverable resource of 44 Tcf.

Reservoir Properties (La Casita Fm). The underlying La Casita Fm (Tithonian) is
regarded as the primary hydrocarbon source rock in the Sabinas Basin, consists of organic-rich
shales deposited in a deepwater marine environment. The La Popa sub-basin is one of
numerous sub-basins within the Sabinas Basin, Figure 1-6.° The La Popa is a rifted pull-apart
basin that contains thick source rock shales. Up to 370 m of black carbonaceous limestone is
present in the Upper Jurassic La Casita Fm (Tithonian), overlying several km of evaporitic
gypsum and halite. Total shale thickness in the La Casita ranges from 60 m to 800 m. Thick
(300 m), prospective La Casita Fm shales have been mapped at depths of 2,000 to 3,000 m in
the central Sabinas Basin. Nearby, a thicker sequence (400-700 m) was mapped at greater
depth (3,000 to 4,000 m). We assume an organically-rich interval of 800 feet with 240 feet of
net pay. TOC ranges from 1.0% to 3.0%, and thermally the shale is well into the dry gas
window (R, = 2 to 3%).

Resources (La Casita Fm). Uncertainty of reliable formation depths along the edges of
the Sabinas limited our estimate of the prospective area to 12,000 mi? for the La Casita Fm.
With gas in-place concentrations for the La Casita Fm at 58 Bcf/mi?, the risked shale gas in-

place is 56 Tcf, with a risked technically recoverable resource of 11 Tcf.
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Figure 1I-6. Geologic Map of the La Popa Sub-Basin, Southeastern Portion of the Sabinas Basin.

Note the numerous detachment and salt-controlled folds.
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Tampico Basin

Overview. Bounded on the west by the fold-and-thrust belt of the Sierra Madre Oriental
(Laramide) and on the east by the Tuxpan platform, the Tampico-Mizatlan Basin extends north
from the Santa Ana uplift to the Tamaulipas arch north of Tampico. At the northern margin of

the basin is an arch, limited by a series of faults extending south from the Tamaulipas arch.

In the southern Tampico Basin, the Pimienta Shale is at a prospective depth of 1,400 to
3,000 m. Three structures dominate this area. The NE-SW trending Piedra de Cal anticline in
southwest Bejuco area is about 40 km long with a Pimienta Shale cresting at 1,600-m depth.
The SW-NE trending Jabonera syncline in southeast Bejuco is about 20 km long, with a
maximum shale depth of 3,000 m in the east and a minimum of about 2,400 m in the west. A
system of faults defines the Bejuco field in the center of the area. Two large areas (Llano de

Bustos and La Aguada) remained emergent and lack upper Tithonian shale deposits.

Reservoir Properties (Pimienta Fm). Near the city of Tampico, some 50 conventional
wells have penetrated organic-rich Upper Jurassic (Tithonian) Pimienta Fm shales at depths of
about 1,000 to 3,000 m, Figure 1I-7. Detailed shale thickness data are not available, but the
Pimienta Fm here generally ranges from 200 m thick to as little as 10 m thick on paleo highs.
We estimate an average net shale thickness of 245 feet for the prospective area. Average net

shale TOC is estimated at 3%, with a thermal maturity of 1.3% Ro.

Resources (Pimienta Fm). Excluding the paleo highs, the prospective area of the
Pimienta Shale is 14,240 mi? in the Tampico Basin. The resource concentration averages 63
Bcf/mi.  We estimate a risked shale gas in-place of 215 Tcf, with a risked technically

recoverable resource of 65 Tcf.
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Figure lI-7. Potentially Prospective Pimienta Formation (Tithonian) Shale, Tampico Basin.
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Tuxpan Platform

Overview. This feature southeast of the Tampico Basin is a subtle basement high
capped with a well-developed Early Cretaceous carbonate platform.’® A particularly prospective
and relatively well defined shale gas deposit is located in the southern Tuxpan Platform.
Approximately 50 km south of the city of Tuxpan, near Poza Rica, a dozen or so conventional
petroleum development wells in the La Mesa Syncline area penetrated thick organic-rich shales
of the Pimienta (Tithonian) and Tamaulipus (Lower Cretaceous) Formations."' A detailed cross-
section of the Tuxpan Platform shows thick. Lower Cretaceous and Upper Jurassic source
rocks dipping into the Gulf of Mexico Basin, Figure II-8. These source rocks reach prospective
depths of 2,500 m.

Reservoir Properties (Tamaulipas Fm). The Lower Cretaceous Tamaulipas Fm spans
a depth range of 6,000 to 10,100, averaging 7,900 feet. The gross interval averages 500 feet
while the net organically-rich pay is 225 feet. TOC in the Tamaulipas Fm is estimated at 3.0%.

The thermal maturity is slightly lower than for the deeper Pimienta, at 1.25% R,.

Resources (Tamaulipas Fm). Given limited data on the younger Tamaulipas Fm, the
prospective area of the Pimienta Shale was used, limiting the area to 1,950 mi?, Figure 11-9. The
shallower Tamaulipas Shale is estimated to hold about 65 Bcf/mi with a risked shale gas in-

place of 25 Tcf. The Tamaulipas Fm has a risked technically recoverable resource of 8 Tcf.

Reservoir Properties (Pimienta Fm). The Pimienta Shales range from 140 to 350 m
thick, is 2,400 to 3,300 m deep, and is prospective for shale gas development across a nearly
80-km long trend. However, southeast of Poza Rica some areas have thin to absent shale,
probably due to submarine erosion or lack of deposition. The gamma ray log response in the

organic-rich Pimienta shale indicates high TOC.

Resources (Pimienta Fm). In the Tuxpan Platform, the prospective area of the
Pimienta Fm shale is 1,950 mi>. Greater depth pushes the resource concentration to 72 Bcf/mi?
and the risked shale gas in-place to 28 Tcf. The risked technically recoverable of the Pimienta

Shale equals 8 Tcf.
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Figure 1I-8. Detailed Cross-Section of the Tuxpan Platform in East-Central Mexico Showing Thick Lower
Cretaceous and Upper Jurassic Source Rocks Dipping into the Gulf of Mexico Basin.
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Figure 1I-9. Potentially Prospective Shale Gas Area of the Tuxpan Platform.
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Veracruz Basin

Overview. The Veracruz Basin extends over a total area of about 9,030 mi® onshore
near its namesake city. The basin’s western margin is defined by thrusted Mesozoic carbonates
(early Tertiary Laramide Orogeny) of the Cordoba Platform and Sierra Madre Oriental, Figure II-
10. The basin is asymmetric in cross section, with gravity showing the deepest part along the
western margin. The basin comprises several major structural elements, from west to east: the
Buried Tectonic Front, Homoclinal Trend, Loma Bonita Anticline, Tlacotalpan Syncline, Anton

Lizardo Trend, and the highly deformed Coatzacoalcos Reentrant in the south.'?

Reservoir Properties (Upper Cretaceous Maltrata Fm). The Upper Cretaceous
(Turonian) Maltrata Formation is a significant source rocks in the Veracruz Basin, with up to 80
m of shaly marine limestones and TOC exceeding 2%. Currently the Maltrata is in the late oil-

to-gas preservation window, with R, of 1.0% to 1.3%.

Resources (Upper Cretaceous Maltrata Fm). Assuming that 90% of the Veracruz
Basin is in a favorable depth range, the prospective area of the Upper Cretaceous Maltrata Fm
of the Veracruz Basin is 8,150 mi>. ARI estimates a relatively low resource concentration of 29
Bcf/mi?, resulting in a risked shale gas in-place of 38 Tcf. The risked technically recoverable

resource is estimated at 9 Tcf.
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Figure 1I-10. Veracruz Basin Outline and Shale Gas Prospective Area.
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NATURAL GAS PROFILE

Mexico produced 1.84 Tcf of natural gas in 2008 and consumed 2.36 Tcf,"> Mexico’s
Gulf of Mexico Basin is the country’s main petroleum producing area, with approximately 12.7
Tcf of proved natural gas reserves as of 2010. The Southern Region of Mexico includes the
majority of the reserves though the Northern Region is expected to grow as unconventional
prospects are explored. With an estimated total 681 Tcf of technically recoverable resources,

shale gas could greatly expand Mexico’s existing natural gas reserves.

State-owned Pemex operates more than 5,700 miles of natural gas pipelines across
Mexico as well as much of the distribution network. There are currently ten active import
connections with the United States, which saw 338 Bcf of U.S. imports to Mexico and 28.3 Bcf
of Mexico’s gas exports to the U.S. in 2009.

EXPLORATION ACTIVITY

Despite the close proximity of successful shale gas plays in the USA, such as the Eagle
Ford Shale in South Texas, no shale gas exploration drilling has yet occurred in Mexico. The
national oil company PEMEX plans to drill the country’s first shale gas test well sometime later

this year, very likely targeting the Eagle Ford Shale in Coahuila state.
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M. NORTHERN SOUTH AMERICA

INTRODUCTION

A series of Late Cretaceous-age organic-rich shales exist in northern South America.
These shales have sourced the vast majority of the conventional oil and gas produced from
Venezuela and Colombia, in particular from the Maracaibo Basin and its inclusive Catatumbo
Sub-basin, Figure 1ll-1." These organic-rich shale source rocks in these basins are age-

equivalent to the prolific South Texas Eagle Ford Shale in the United States.

Based on regional mapping and analysis of available geologic data, the Maracaibo and
Catatumbo onshore basins in Venezuela contain the most prospective shale gas plays in
northern South America, holding an estimated 120 Tcf of risked shale gas in-place, Table IlI-1.
Technically recoverable shale gas resources are estimated at approximately 30 Tcf. While a
high proportion of these two basins contain shale source rocks, significant areas are immature
for gas generation and/or are excessively deep for exploration and production (over 5,000

meters).

In addition, the Upper Magdalena Valley and Llanos basins in west-central and eastern
Colombia were analyzed for shale gas potential. While thick sequences of Late Cretaceous
black shales are also present here, low thermal maturities? (~0.5% Ro) persist across the region
and the shale gas formations appear to be immature for gas generation. Further limiting the
prospectivity of the Columbian shales are the complex Andean tectonics which include

numerous thrust and extensional faults, particularly in the Llanos Foothills.?
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Figure lll-1. Gas Shale Basins of Northern South America.
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Table lll-1. Gas Shale Reservoir Properties and Resources of Northern South America.

© . Marac:albo Catatumbo Sub-Basin
= Basin/Gross Area Basin (2,380 mi?)
3 (20,420 mi?) ’
,§ Shale Formation La Luna Fm La Luna Fm Capacho Fm
Geologic Age Late Cretaceous| Late Cretaceous Late Cretaceous
w2 Prospective Area (miz) 1,800 1,310 1,950
g Interval 100 - 400 100 - 300 590 - 1,400
Y |Thickness (ft) |Organically Rich 200 200 800
S Net 180 180 320
z Interval 12,500 - 15,000 6,000 - 7,200 6,500 - 8,500
o Depth (ft)
Average 13,500 6,600 7,500
£ & |Reservoir Pressure Normal Normal Normal
2 £ |Average TOC (wt. %) 5.6% 4.5% 1.3%
§ S |Thermal Maturity (%Ro) 1.25% 1.05% 1.10%
= o Clay Content Low/Medium Low/Medium Low/Medium
§ GIP Concentration (Bcfimi?) 93 74 106
o |Risked GIP (Tcf) 42 29 49
& |Risked Recoverable (Tcf) 11 7 12

MARACAIBO BASIN (VENEZUELA)

Geologic Characterization. The Maracaibo Basin in northeastern Venezuela is
situated in a triangular intermontane depression.* The western edge of the basin is bounded by
the Sierra de Perija mountain range. The Merida Andes define the southern limit and the Truijillo
Mountains the eastern extent of this basin, Figure Ill-2. Beginning in the Late Jurassic,
sediments were deposited in depressions defined by north-northeast trending normal faults.®
Throughout the Cretaceous and Paleocene, clastic and carbonate material along with marine
shales were laid down across the passive margin, eventually becoming the main source rocks

of the Maracaibo Basin.

By the end of the Paleocene, when the Caribbean plate began to collide with
northwestern South America, the main sedimentary depocenter shifted from northwest to
southeast. The convergence resulted in subsidence and a 3-mile thick Eocene foreland wedge
of clastic sediments that accumulated across much of the present-day Maracaibo Basin. The
area was then affected by regional uplift across the central and northeastern portions during the
The uplift of the

surrounding mountain ranges resulted in Miocene-Holocene subsidence of the basin.

Advanced Resources
International, Inc.

Oligocene, which brought about erosion and an Eocene unconformity.
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Figure Ill-2. Regional Outline of the Maracaibo Basin.
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Major structural features present within the Maracaibo Basin include the Icotea and
Pueblo Viejo faults which run north-south through central Lake Maracaibo and its eastern flank.
The Burro Negro Fault stretches northwest-southeast in the northeastern portion of the basin.
The Valera Fault runs north-south along the eastern portion of the basin. These structural
elements are mapped in Figure IlI-2 and shown in the corresponding seismic cross-sections of
Figures IlI-3 and IlI-4. To the east of the Icotea Fault, numerous minor faults make up a small
pull-apart basin, extending up to the Eocene unconformity. The seismic profiles also show most

of the hydrocarbon reservoirs present reside below this erosional surface.
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Figure lll-3. Seismic Profiles, Maracaibo Basin.

1

5000

F Fil A Fault

leotea pull-apart
hasin

B Fanli

Pastily inverted Parnilly iyl G

o Puchlo Viejo subbasin

o Vigjo
Fault

February 17, 2011

S Unconlormity

i
—

®
®

Fauli

Inverted fault

Sense of fault motion

= Prominent rellecior
Horizomal motion out of
pline of seclion

Horizontal mation into
plane ol sechion

_/ Hydrocarbon migration pathwiays

- Hydrocarbon reservoir

- Source rock (Aptian=Coniadian)

i

rEs2rvoir

Miocene l
Middle-upper Encen
Lower—midd e Focens J '

Clasne

-5

Modified from Escalona, A. and Mann, P., 2006

A

Advanced Resources
International, Inc.



World Shale Gas Resources: An Initial Assessment

Figure lll-4. Seismic Profiles, Maracaibo Basin.
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Despite these and other geologic complexities, the Maracaibo Basin is home to some of
the world’s richest source rocks and conventional oil and gas reservoirs. In particular, the Late
Cretaceous shales of the La Luna Formation are a highly prospective target for shale gas

exploration, Figure IlI-5.

Figure lll-5. Maracaibo Basin Stratigraphy.
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Reservoir Properties (La Luna Shale). The Cretaceous (Cenomanian-Santonian) La
Luna Formation, deposited under anoxic conditions, has long been a focus of study for
conventional onshore oil production as it is the primary source rock for the hydrocarbons in the
Maracaibo Basin.® Limestone intervals within the La Luna Fm can be excellent oil reservoirs,
sourced by hydrocarbons of the adjoining deep shales. The outer-shelf shales of the overlying
Colon Fm act as effective petroleum seals across the region, with most oil seepage only

occurring via fault pathways.
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Distributed across much of the Maracaibo Basin, the black calcareous La Luna Shale
ranges from 100 to over 400 feet thick,7 thinning towards the south and east,8 Figure II-6.
Maximum thickness of nearly 500 feet occurs in the extreme northern part of the basin. To the
south and along Lake Maracaibo’s eastern flank, the La Luna averages about 200 feet thick.
ARI estimates that between one- and two-thirds of the gross thickness is net source rock pay.
While it is widely accepted that the formation was deposited in an anaerobic setting, paleowater
depth estimates range from over 3,000 feet® to only 160 feet.”’ The deeper environment is
based on faunal assemblages, whereas the shallow deposition theory argues for upwelling of

deep water onto a shallow platform.

Figure lll-6. La Luna Fm Isopach, Maracaibo Basin.
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Depth to the Precambrian-Jurassic basement in the Maracaibo Basin reaches over
20,000 feet in southern Lake Maracaibo and its onshore eastern edge, Figure IlI-7. Much
shallower depths occur towards the west, where the basement depth quickly rises to 5,000 feet.
Depth to the La Luna Fm ranges from less than 5,000 to over 15,000 feet, generally deepening
from northeast to southwest, Figure IlI-8. ARI's mapping indicates that the best shale gas
potential exists at depths of 12,500 to 15,000 feet, the interval where the La Luna becomes

thermally mature and gas prone.

Thermal maturity of the La Luna Fm increases from west to east across the Maracaibo
Basin, from less than 0.7% R, to over 1.7% R, east of Lake Maracaibo, Figure 11l-9."" Vitrinite
reflectance data indicate the unit is mainly in the oil generation window, with only a narrow area
of the eastern basin prospective for shale gas. This gas prone area covers approximately 1,800
mi? and establishes the prospective area for this basin. The western boundary is defined by the
1.0% R, contour. The eastern edge is limited by maximum 15,000-ft depth, inferred from the
structure of the Late Jurassic basement.'? To date, no significant free gas accumulations have

been discovered in the Maracaibo Basin; all natural gas production has been associated gas.

Total organic carbon (TOC) varies across the basin, with values ranging from 3.7% to
5.7% in the northwest to 1.7% to 2% in the south and east. Maximum TOC values can reach
16.7%. ARI estimates the average TOC across the entire Maracaibo Basin is approximately
5.6%. A large portion of this shale-gas-prospective area includes part of Lake Maracaibo itself.
ARI chose to include this submerged area because water depths are shallow (less than 100
feet) and there are numerous conventional production platforms that could provide access to

shale drilling and development.

The underlying Capacho Formation, which is defined as a separate unit in the southern
and eastern regions, contains black limestone and overlying micaceous-argillaceous shale with
gross thicknesses of over 500 feet in the Maracaibo Basin. However, the Capacho Fm was
determined to be mostly located in areas that exceeded the prospective depth threshold and/or

where gas maturity was not reached, thus its shale gas potential was not assessed.
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Figure lll-7. Maracaibo Basin Depth to Basement.

A DEPTH TO BASEMENT ?
CARIBBEAN SEA

N
sday

15
57 20 15
8 <P 10—
15
10— '\ |

_
T 1@ ~:‘_';10//5/ SOUTH

vy — AMERICA
SECTION
SHOWN IN /BB
FIG.9 25

Modified from Lugo, J. and Mann, P., 1995

Figure 1ll-8. Maracaibo Basin Cross Section.
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Figure 1lI-9. Maracaibo Basin, La Luna Shale Prospective Area.
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Resources (La Luna Shale). The La Luna Formation shales of the Maracaibo Basin
have an estimated resource concentration of approximately 93 Bcf/mi?, a level which is
prospective and compares favorably with that of the Marcellus Shale. With an estimated 1,800-
mi? prospective area as well as significant geologic complexity in the region, the risked gas-in-
place is approximately 42 Tcf. Risked recoverable resources for the La Luna Shale is estimated
at about 11 Tcf, Table IlI-1.

CATATUMBO SUB-BASIN (COLOMBIA)

Geologic Characterization. The southwestern Catatumbo Sub-basin extension in
eastern Colombia also shows La Luna and Capacho shale potential. The Santander Massif
forms the western boundary of this geologic province, the Merida Andes limit its southern and
southeastern extent, and the Colombia-Venezuela border defines its eastern edge. The
western and eastern areas of the sub-basin are characterized by folds, reverse faults and thrust
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faults, Figure Il1I-10. Much like in the northern Maracaibo Basin, the Catatumbo Sub-basin has

numerous conventional oil fields across its 2,380-mi” areal extent.

Reservoir Properties (La Luna Shale). The La Luna Formation is at relatively shallow
depth in the Catatumbo Sub-basin, ranging from 6,000 to 7,600 feet.” Limited available well
samples mapped in Figure 1lI-11 show the average depths (along with other geologic
properties), range from 7,120 feet in the extreme eastern Tibu 178K well to the slightly deeper
7,530 feet in the Socuavo 1 well, fifteen miles to the northwest. The unit consists of limey
mudstones, wackestones, and minor shales ranging in gross thickness from 100 to 300 feet,
averaging nearly 200 feet. Based on available vitrinite samples, thermal maturity ranges from
0.85 to 1.21% R,, with generally higher reflectance in the central and northern areas of the
basin. Samples from the Cerro Gordo 3 well in the southeast portion of the Catatumbo Sub-

basin averaged 0.85% R,, indicating that this area is oil prone.

Figure lll-10. Catatumbo Sub-basin Cross-Section.
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Figure lll-11. La Luna Fm Basemap and Geologic Properties, Catatumbo Sub-basin.
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Total organic carbon in core samples reaches a maximum of 11.2% in the La Luna, but
more typically averages a still rich 4 to 5% TOC. Figure IlI-12 shows a slight increase in TOC
concentration towards the base of the La Luna Fm in the Cerrito 1 well, southeastern
Catatumbo Sub-basin. In the eastern Catatumbo, the La Luna Fm shows lower TOC of 2.99%
in the Tibu 178K well. Based on pyrolysis and maturity data, organics are mainly type Il
kerogen, with original hydrogen indices (HI) ranging from 200 to 500 mg/g C. Rock-Eval
analyses show lower rock extract HI values, approximately 97 to 130 mg/g C, in the eastern to
northeast region of the basin. ARI estimates the total prospective area for shale gas
development to be about 1,310 mi?, based on thermal maturity distribution and depth cut-off.
Additionally, basin modeling shows that the present-day temperature gradient in the area

ranges from 1.7 and 2.0 degrees F per 100 feet of depth.

Resources (La Luna Shale). ARI estimates a moderately high average 74 Bcf/mi?
resource concentration for the La Luna Shale in the Catatumbo Sub-basin. Covering a
prospective area of approximately 1,310 mi® (Figure 11l-10), the risked shale gas in-place totals
an estimated 29 Tcf. Risked technically recoverable resources for the La Luna Shale amount to
about 7 Tcf, considerably less than in the Maracaibo Basin due to shallower burial and a smaller

prospective area.

Reservoir Properties (Capacho Formation). The Capacho Formation (Cenomanian-
Coniacian) is a distinct unit from the overlying La Luna Formation in the Catatumbo Sub-basin,
whereas the two units are merged in most of the Maracaibo Basin. The Capacho Fm consists
of dark-gray to black shales and limestones and is much thicker than the La Luna, ranging from
590 to nearly 1,400 feet in total thickness. Depth to the Capacho ranges from 6,500 feet to
8,500 feet in the Catatumbo Sub-basin, with greater measured depth in the north and east at
8,275 feet in the Socuavo 1 well, Figure I1I-13. Vitrinite reflectance ranges from 0.96% R, in the
northern Rio de Oro 14 well to 1.22-1.24% R, in southeastern well samples. Based on the
above properties, the prospective area for the Capacho Formation shales is about 1,550 mi?,
larger than the prospective area for the La Luna shale primarily due to higher thermal maturity in

the south.
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Figure lll-12. Calculated TOC (wt/%) Well Log from Cerrito 1 Well, South-Central Catatumbo Sub-basin.
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Figure lll-13. Capacho Fm Basemap and Geologic Properties, Catatumbo Sub-basin.
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Maximum measured total organic carbon reaches 5% in the Capacho Formation, as
shown in the Socuavo 1 well in the northeastern Catatumbo Sub-basin. However, more
typically, the TOC is lower, with a mean value of about 1.3 to 1.5%, shown in Figure 11l-12 in the
Cerrito 1 well. The lowermost segment of the Capacho Fm, shown in the Cerrito 1 well, is
believed to have been deposited during a transgressive period dominated by slow
sedimentation and more anoxic conditions yielding better preservation of organic matter. Figure
[lI-14 plots original HI versus original TOC of samples from the Capacho and La Luna
formations, indicating the Capacho Formation ranges from a good oil to poor gas source. The
underlying Aguardiente Fm is also plotted in the chart but was not assessed due to unpromising
TOC and HI levels. Pyrolysis data shows kerogen within the Capacho Fm to be a mixture of

Types Il and Il

Resources (Capacho Formation). Within the Catatumbo Sub-basin, the Capacho
Formation has an estimated 106 Bcf/mi? resource concentration. The prospective area of 1,550
mi? yields a risked gas in-place of about 49 Tcf, with a risked technically recoverable resource of

approximately 12 Tcf.
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VENEZUELA

Venezuela produced 848 Bcf of natural gas in 2008 and consumed 901 Bcf, importing a
small volume from neighboring Colombia.™ Proven natural gas reserves were estimated at 176
trillion cubic feet in 2010 by the Oil & Gas Journal (OGJ), of which 90% is associated with oil
reserves. The government regulatory agency Enagas reports that 70% of natural gas
production is not marketed but rather re-injected for enhanced crude oil extraction. Recent
upgrades to Venezuela’s natural gas pipeline network include the Interconnection Centro
Occidente (ICO), with ultimate capacity of 520 MMcf/d, connecting the central and western parts

of the country.

ARI estimates a risked shale gas in-place of 42 Tcf for Venezuela, all coming from the
La Luna Formation of the Maracaibo Basin. The risked recoverable resource here is

approximately 11 Tcf.
COLOMBIA

Colombia produced 318 billion cubic feet of natural gas in 2008 and consumed 265 Bcf.
OGJ reported Colombia’s proven natural gas reserves were 3.96 Tcf in 2010, mostly located in
the Llanos Basin. Re-injection for enhanced oil recovery consumed 43% of gas production in
2008. Approximately 2,000 miles of natural gas pipeline stretch across Colombia. In early 2008
the new Antonio Ricuarte pipeline linked the country with Venezuela. Initially, gas is being
exported to aid oil production in western Venezuela, though current plans call for flow reversal

beginning in 2012.

Colombia’s cumulative shale gas resource (risked) totals 79 Tcf, combining the gas in-
place of the Catatumbo Sub-Basin’s La Luna and Capacho formations. Ultimately, 19 Tcf is

determined to be technically recoverable.

Exploration Activity

As previously mentioned, much of the current oil production in the Maracaibo Basin and
Catatumbo Sub-basin is from conventional stratigraphic traps. A recent well drilled by Ecopetrol
-- apparently the first test of the La Luna Formation in the Catatumbo — reportedly showed good
gas potential, albeit from conventional targets. Junior Canadian E&P Alange Energy

Corporation is evaluating the prospectivity of the eastern area of the basin. However, this
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exploration activity also appears to be focused on conventional reservoirs within the La Luna

Shale interval.
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IV. SOUTHERN SOUTH AMERICA

INTRODUCTION

The “Southern Cone” region of South America has world-class shale gas potential that is

just beginning to be tested. Figure IV-1 shows the principal shale gas basins of South America.

Figure IV-1. Shale Gas Basins of Southern South America
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Argentina’s Neuquen Basin appears the most prospective. Also in Argentina, the
Cretaceous shales in the Golfo San Jorge and Austral-Magallanes basins have good potential,
although higher clay content may be a risk in these lacustrine-formed deposits. Additional shale
gas potential exists in the frontier Parana-Chaco Basin complex of Brazil and Paraguay in

Devonian Los Monos Formation shales.

The Neuquen, Golfo San Jorge, and Austral basins in Argentina, the Magallanes Basin
in Chile, the Chaco Basin in Paraguay, Argentina, and Bolivia, and the Parana Basin in Brazil
and Uruguay contain an estimated 4,449 Tcf of risked shale gas in-place with 1,195 Tcf of
technically recoverable resources, Table IV-1. Smaller Tertiary rift basins also are present in

coastal southeastern Brazil," but were not assessed.

Table IV-1. Reservoir Properties and Resources of Southern South America

g Basin/Gross Area Neuquen Basin((66,900 mi?) San Jorge Basin((46,000 mi?)

iz Shale Formation Los Molles Fm | Vaca Muerta Fm Aguada Bandera Fm Pozo D-129 Fm
@ Geologic Age Middle Jurassic |Jurassic-Early Cretac| Late Jurassic-Early Cretaceous | Early Cretaceous
e Prospective Area (mi’) 9,730 8,540 8,380 4,990

£ Interval 0- 3,300 100 - 750 0- 15,000 800 - 4,500

"‘_‘; Thickness (ft) |Organically Rich 800 500 1,600 1,200

2 Net 300 325 400 420

iy Interval 6,500 - 15,000 5,500 - 10,000 6,500 - 16,000 6,600 - 15,800
o |Depth (ft)

Average 12,500 8,000 12,000 10,500
£ 8 Reservoir Pressure Overpressured Overpressured Normal Normal
; g Average TOC (wt. %) 1.1% 4.0% 2.2% 1.5%

2 g Thermal Maturity (%Ro) 1.50% 1.25% 2.00% 1.50%
Clay Content Low/Medium Low/Medium Low/Medium Low/Medium
S |GIP Concentration (Befimi?) 123 168 149 151
§ Risked GIP (Tcf) 478 687 250 180
& |Risked Recoverable (Tcf) 167 240 50 45
5 : . 5 Parana-Chaco Basin
5 Basin/Gross Area Austral-Magallanes Basin (69,000 mi?) (500,000 mi?)
L=
@ Shale Formation L. Inoceramus Magnas Verdes San Alfreda
= Geologic Age E. Cretaceous E. Cretaceous Devonian
p Prospective Area {miI] 19,500 19,500 50,000
ﬁ Interval 400-2,000 100 - 300 100 - 12,000
& |Thickness (ft) [Organically Rich 600 300 2,000
m
£ Net 300 240 1,000
=9
= Depth (f) Interval 6,000 - 10,000 6,000 - 10,000 5,000 - 11,000
Average 8,500 8,500 7,500
,ns. 8 Reservoir Pressure Slightly Overpressured | Slighy Overpressured Nomal
B
5 2 |Average TOC (wt. %) 1.6% 2.0% 2.5%
3 2 |Themmal Maturity (%Ro) 1.30% 1.30% 0.90%
-8 - =
Clay Content Medium Medium Low
[ =
v GIP Concentration (Bcf/mi’) 86 72 M7
E Risked GIP (Tcf) 420 351 2,083
[ Risked Recoverable (Tcf) 84 88 521
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Neuquen Basin (Argentina)

Geologic Characterization. Located in west-central Argentina, the Neuquen Basin
contains Late Triassic to Early Cenozoic strata that were deposited in a back-arc tectonic
setting.? Extending over a total area of 66,900 mi? the basin is bordered on the west by the
Andes Mountains and on the east and southeast by the Colorado Basin and North Patagonian
Massif, Figure IV-2. The sedimentary sequence exceeds 22,000 feet in thickness, comprising
carbonate, evaporite, and marine siliclastic rocks.®> Compared with the thrusted western part of
the basin, the central Neuquen is deep, less structurally deformed. The Neuquen Basin is a
major oil and gas production area for conventional and tight sandstones and could be an early

site for shale gas development in South America.

Figure IV-2. Neuquen Basin Shale Gas Prospective Area and Basemap
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The stratigraphy of the Neuquen Basin is shown in Figure IV-3. Of particular exploration
interest are the shales of the Middle Jurassic Los Molles and Late Jurassic-Early Cretaceous
Vaca Muerta Formations. These two thick deepwater marine sequences sourced most of the oil

and gas fields in the basin and are considered the primary targets for shale gas development.

Figure IV-3. Neuquen Basin Stratigraphy
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Reservoir Properties (Los Molles Shale). The Middle Jurassic (Toarcian-Aalenian)
Los Molles Formation is considered an important source rock for conventional oil and gas
deposits in the basin. Basin modeling indicates that hydrocarbon generation took place in the
Los Molles 50 to 150 Ma, with the overlying Lajas Formation tight sands serving as reservoirs.*
The overlying Late Jurassic Aquilco Formation evaporites effectively seal this hydrocarbon

system, resulting in overpressuring (0.60 psi/ft) in parts of the basin.

The Los Molles Shale is distributed across much of the Neuquen Basin, reaching more
than 3,300 feet thick in the central depocenter. Available data shows the shale thinning towards
the east.” A southeast-northwest regional cross-section, Figure 1V-4, shows the Los Molles
deposit particularly thick in the basin troughs. Well logs reveal a basal Los Molles Shale about
500 feet thick.°

Figure IV-4. Neuquen Basin SW-NE Cross Section
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On average, the prospective Los Molles Shale occurs at depths of 9,500 to 12,500 feet,
though maximum depth surpasses 15,000 feet in the basin center. In the south, the shale
occurs at depths of 7,000 feet or shallower within the uplifted Huincul Arch. The Los Molles

Shale is at shale-prospective depth across much of the Neuquen Basin.

Total organic carbon for the Los Molles Shale was determined from various locations
across the Neuquen Basin. Samples from five outcrops in the southwestern part of the basin
showed average TOC ranging from 0.55 to 5.01%, with an overall mean of 1.62%.’ In the
southeast, TOC averaged 1.25% at depths near 7,000 feet at one location. Further east,
another interval of the Los Molles Formation sampled from depths of 10,500 to 13,700 feet
yielded TOC'’s in the range of 0.5% to nearly 4.0%. The lowermost 800-ft section here recorded
a mean TOC of about 2%. Limited data were available for the central and northern regions,
where shale is deeper and gas potential appears highest. One well in the basin’s center
penetrated two several-hundred-foot thick intervals of Los Molles Shale, with average 2% and

3% TOC, respectively. Regionally, the mean TOC of the Los Molles is in the range of 1.5%.°

The thermal maturity of the Los Molles Shale varies across the Neuguen Basin, from
highly immature (R, = 0.3%) in the shallow Huincul Arch region, oil-prone (R, = 0.6%) in the
eastern and southern parts of the basin, to fully dry-gas mature (R, > 2.0%) in the basin
center.®'® The lower portion of the Los Molles is marginally mature for gas (R, > 1.0%) in a well
located north of the Huincul Arch. Gas shows are prevalent throughout the Los Molles

Formation.

The prospective area of the Los Molles, Figure IV-5, is defined by low vitrinite
reflectance cutoff in the north, thinning in the east, and complex faulting and shallow depth of
the Huincul Arch in the south. ARI extended the western play edge beyond the main productive
Neuquen area, where most of the conventional oil and gas fields are located, into the Agrio Fold
and Thrust Belt along the foothills of the Andes Mountains. While there is some geologic risk

associated with this region, the thermal maturity is favorable for shale gas generation.

Resources (Los Molles Shale). The Los Molles Shale of the Neuquen Basin has an
estimated resource concentration of approximately 123 Bcf/mi?, benefitting from favorable
thickness and overpressuring. The prospective area for this Middle Jurassic shale is estimated
at approximately 9,730 mi? vyielding a risked gas in-place of 478 Tcf. Risked technically

recoverable resources for the Los Molles Shale are estimated at 167 Tcf, Table IV-1.
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Figure IV-5. Vaca Muerta Fm, TOC, Thermal Maturity, and Prospective Area, Neuquen Basin
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Reservoir Properties (Vaca Muerta Shale). The Late Jurassic to Early Cretaceous
(Tithonian-Berriasian) shales of the Vaca Muerta Formation are considered the primary source
rocks for oil production in the Neuquen Basin. The Vaca Muerta consists of finely-stratified
black and dark grey shales and lithographic lime-mudstones that total 200 to 1,700 feet thick."
The organic-rich marine shale was deposited in reduced oxygen environment and contains
Type Il kerogen. Although somewhat thinner than the Los Molles Fm, the Vaca Muerta has

higher TOC and is more widespread across the basin.

The Vaca Muerta Fm thickens from the south and east towards the north and west,
ranging from absent to over 700 feet thick in the basin center.' Depth ranges from outcrop
near the basin edges to over 9,000 feet deep in the central syncline.” Prospective depth for the

Vaca Muerta Shale averages 8,000 feet.
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The Vaca Muerta Formation generally is richer in TOC than the Los Molles Formation.
Sparse available TOC data were derived from wells and bitumen veins sampled from mines in
the north.” These asphaltites are very rich in organic carbon, increasing northward to a
maximum of 14.2%. In the south, mapped TOC data range from 2.9 to 4.0%. TOC of up to

6.5% is reported in the lower bituminous shale units of the Vaca Muerta.

While the Vaca Muerta Formation is present across much of the Neuquen Basin, it is
mostly immature for gas generation (<1% R,). Figure IV-4 shows the Vaca Muerta at depths
approaching the upper end of the oil window; note that numerous conventional oil fields occur in
this region. Thermal maturity increases from less than 0.6% R, to >1.5% R, into the deep
northwest trough.15 Northeast of the Huincul Arch, R, of 0.8% was measured, immature for
gas. Bounded in the east and north by the 1.0% R, contour, the prospective play area of 8,540
mi? is further limited by the Huincul Arch to the south and Andes Mountains towards the west,
Figure IV-5.

Resources (Vaca Muerta Shale). Based on the available geologic properties, the
resource concentration of the Vaca Muerta Shale in the Neuquen Basin is estimated at 168
Bcf/mi?, comparable to that of the age-equivalent Haynesville Shale in the United States. A
risked shale gas in-place of 687 Tcf, with risked technically recoverable resources of 240 Tcf,
Table IV-1.

Golfo San Jorge Basin (Argentina)

Geologic Characterization. Located in central Patagonia, the 67,000-mi’> Golfo San
Jorge Basin accounts for about 30% of Argentina’s conventional oil and gas production.’® An
intra-cratonic extensional basin, the San Jorge extends across the width of southern Argentina,
from the Andean foothills on the west to the offshore Atlantic continental shelf in the east.
Excluding its small offshore extent, the onshore Golfo San Jorge Basin covers approximately
46,000 mi°.

Figure IV-6 shows the basin bordered by the Deseado Graben and Massif to the south,
by the Somuncura Massif to the north, and the Andes Mountains in the west. Compressional
structures of the San Bernardo Fold Belt transect the west-central region."” Extensional faults
are widespread in the northeastern and southern flanks, while the northwestern edge of the

basin is less faulted.®
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Figure IV-6. San Jorge Basin
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Extensional events marked by the formation of grabens and half-grabens in the present-
day location of the Golfo San Jorge Basin began in the Triassic to Early Jurassic as the
Gondwana supercontinent began to break up.' A separate period of extension followed in the
Middle Jurassic, as the Lonco Trapial Volcanics were deposited via northwest-striking faults.
The region subsided by the end of the Jurassic and extensive, mainly lacustrine deposits
formed, including the thick black source rock shales and mudstones of the Neocomian Aguada

Bandera Formation, Figure IV-7.
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Figure IV-7. San Jorge Basin Stratigraphy
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Reservoir Properties (Aguada Bandera Shale). The Late Jurassic-Early Cretaceous
Aguada Bandera Formation comprises fine gray sandstones grading into a tuffaceous matrix
towards the top of the formation, with black shales and mudstones increasing towards its
base.” Much of the sediments deposited are lacustrine in origin, though foraminifera found in

2! Towards the north, other

western areas suggest possible marine sources in particular beds.
biota indicative of an outer marine platform depositional environment were observed in well

samples near Lago Colhue Huapi.?

The Aguada Bandera Formation is a heterogeneous unit comprising shale, sandstone,
and occasional limestone. Total formation thickness varies widely, from more than 15,000 feet
thick in the southwest to 0-2,000 feet thick about 60 miles offshore in the east. A similar
thickness variation also is seen in the west. Limited data is present south of Lago Colhue Huapi
to the north. The Aguada Bandara Fm is generally 1,000 to 5,000 feet thick in the central basin,
probably only a fraction of which is high-quality organic shale.
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Depth to the top of the Aguada Bandera Formation is based on the top of underlying
Middle Jurassic Loncol Trapial volcanics. Burial depth reaches a maximum 20,000 feet along
the onshore coast in the center of the basin. Depocenters in the western portion of the basin
typically average a more prospective 10,000 to 12,000 feet deep. The Aguada Bandera is much
shallower, 2,000 to 8,000 feet deep, along the northern and western flanks. In the eastern
coastal onshore portion of the basin, the Aguada Bandera Shale is about 1,500 to 2,500 feet
thick and 20,000 feet deep.

Limited mappable geochemical data were available for analysis in the Aguada Bandera,
which is considerably deeper than the conventional reservoirs and thus rarely sampled. Only
two available wells have TOC and R, data, both located in the basin’s western area. Average
TOC ranged from 1.44% to 3.01% at depths of 12,160 feet and 11,440 feet, respectively.?®
Organic-rich intervals reached 4.19% TOC. Vitrinite reflectance averaged 1.07%, with dry-gas
thermal maturity of 2.4% R,.

Petroleum basin modeling indicates that the minimum gas generation threshold (R, =
1.0%) is typically achieved across the basin at depths below 2,000 m, or roughly 6,600 feet.
Thus, the Aguada Bandera Formation appears to be mature for gas generation across most of
the basin. The unit is likely to be over mature in the deep basin center, where R, is modeled to

exceed 4%.

Using depth distribution and appropriate minimum and maximum R, cutoffs, ARI’s
prospective area for the Aguada Bandera Shale, Figure IV-8, covers approximately 8,380 mi? of
the onshore Golfo San Jorge Basin. The central coastal basin (>16,000 feet deep) and the

northern Lake region (<6,000 feet deep) were excluded as not prospective.

Resources (Aguada Bandera Shale). The average resource concentration for the
Late Jurassic to Early Cretaceous Aguada Bandera Shale is estimated to be 149 Bcf/mi.
Based on the 8,380-mi? prospective area for shale gas potential, a risked gas in-place resource
of 250 Tcf is estimated. The risked technically recoverable resource for the Aguada Bandera
Shale is approximately 50 Tcf, reduced considerably by faulting. Estimated gas recovery also

was reduced because of the lacustrine deposition environment of this unit, Table IV-1.
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Figure IV-8. Aguada Bandera Fm, TOC, Thermal Maturity, and Prospective Area, San Jorge Basin

\}I\f-\\

Comodoro Rivadavia
ng

L5 S

—— " g
|| Aguada  Sources: ' < % |
Bandera Fm  |[fediaues etol. 08 _ P
~-F“ it Arei USGS, 2000 ,f"f N\ : % . . j
- San Jorge Basin 0 10 20 40 60 &0 i A
[l ] oy . ey ..
| . er 0 10 20 a0 &0 SUMHES . Advanced R
- — = | et

Reservoir Properties (Pozo D-129 Shale). The Early Cretaceous Pozo D-129
Formation comprises a wide range of lithologies, with the deep lacustrine sediments -- organic
black shales and mudstones — considered most prospective for hydrocarbon generation.?* The
presence of pyrite, dark laminations, and the absence of fossil burrows in the marine shale
portions of this unit all point to favorably anoxic depositional conditions.”>  Siltstones,
sandstones, and oolitic limestones also were deposited in the shallower water environments of
the Pozo D-129.

The Pozo D-129 Shale is consistently thicker than 3,000 feet in the central basin, with
local maxima exceeding 4,500 feet thick. Along the northern flank the interval is typically 1,000
to 2,000 feet thick. A locally thick deposit occurs in the western part of the basin, but thins
rapidly from about 1,000 feet thick to absent.
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Northeast of Lago Colhue Huapi, the Pozo D-129 shoals rapidly from just under 6,000
feet to around 2,800 feet deep. Just southwest of the lake, depth increases from about 5,000
feet to nearly 9,500 feet. To the south, depths range from 5,000 feet to 6,400 feet, with similar
depths in the west. The Pozo D-129 deepens along the eastern coastal flank of the basin to

nearly 15,900 feet near the city of Comodoro Rivadavia.

Available data indicates organic richness in the southwest, 1.42% to 2.45% TOC, with a
corresponding gas-mature 1.06% R,. In the north-central region a low 0.32% TOC was
recorded, with slightly higher 0.5% R, near Lago Colhue Huapi.*® Towards the basin center in
the east, organic carbon rises to around 1.22%. The thermal maturity in this deep setting is
correspondingly high, 2.49 to 3.15% R,. In the south, thermal maturity drops to oil-prone levels,
0.83% R,; the measured TOC here is about 0.84%.

ARI defined the shale gas prospective area for the Pozo D-129 Fm, based primarily on
depth and available (but incomplete) vitrinite reflectance data. Depth was set at an approximate
6,600-foot minimum limit. The sub-1.0% R, value confined the southeast, and the low TOC
value limited the north. Based on these data, the prospective area for the Pozo D-129 Shale is

estimated at approximately 4,990 mi.

Resources (Pozo D-129 Shale). Relying on the above geologic properties, the
average resource concentration for the Pozo D-129 Shale in the Golfo San Jorge Basin is
approximately 151 Bcf/mi?. The total risked shale gas in-place is estimated to be 180 Tcf, with

the risked technically recoverable resource estimated at 45 Tcf.

Austral-Magallanes Basin (Argentina and Chile)

Geologic Characterization. Located in southern Patagonia, the 65,000-mi® Austral-
Magallanes Basin has promising but untested shale gas potential. Most of the basin is located
onshore in Argentina, where it is usually called the Austral Basin. A small southernmost portion
of the basin is located in Chile’s Tierra del Fuego area, where it is commonly referred to as the
Magallanes Basin. Conventional natural gas production in the Argentina (Austral) portion of the
basin is mainly from deltaic to fluvial sandstones in the Early Cretaceous Springhill Formation at
depths of around 6,000 feet. The Chile portion of the basin accounts for essentially all of that

country’s oil production.
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The Austral-Magallanes Basin is bounded on the west by the Andes Mountains and on
the east by the Rio Chico Ridge. To the north it is separated from the Golfo San Jorge Basin by
the Deseado Massif. The southern part of the basin is truncated by the Fagnano fault system of
the Andean thrust belt. The basin comprises two main structural regions: a normal faulted

eastern domain and a thrust faulted western area.

The basin contains a thick sequence of Upper Cretaceous and Tertiary sedimentary and
volcaniclastic rocks unconformably overlying deformed metamorphic basement of Paleozoic
age, Figure IV-9. Total sediment thickness ranges from 3,000 to 6,000 feet along the eastern
coast to a maximum 25,000 feet along the basin axis. Petroleum source rocks in the basin, of
Lower Cretaceous-age, are present at moderate depths of 6,000 to 10,000 feet across large

areas.?’

The main source rock in the basin is the Lower Cretaceous Lower Inoceramus
Formation (Tithonian-Aptian), which contains black organic-rich shales. The equivalent Rio
Mayer Fm occurs in the northwest portion of the basin, while another equivalent in the southeast
is called the Palermo Aike Fm. The Palermo Aike Shale in the southeast part of the basin is
approximately 200 m thick. Another important source rock in the Austral-Magallanes Basin is
the Magnas Verdes Fm (Aptian-Albian), which comprises marine mudstones and marl with
moderate TOC.

The Lower Inoceramus and Magnas Verdes shales together range from 800 feet thick in
the north to 4,000 feet thick in the south, representing neritic facies deposited in a low-energy

t.28

and anoxic environmen Total organic content of these two main source rocks generally

ranges from 1.0% to 2.0%, with hydrogen index of 150 to 550 mg/g.*

Thermal maturity of the Lower Cretaceous source rock shales increases with depth in a
half-moon pattern, Figure IV-10. Source rocks are generally oil-prone (R, = 0.6 to 0.8%) along
an eastern belt extending from onshore to just off the southeastern Atlantic coast, increasing
westward in maturity to gas-condensate (R, = 1.0%), and finally becoming dry-gas-prone further
west (R, > 1.3%).

February 17, 2011 IV-14 a

Advancod Resources
International, Inc.



World Shale Gas Resources: An Initial Assessment

Figure IV-9. Stratigraphy of the Austral-Magallanes Basin, Argentina and Chile
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Figure IV-10. Inoceramus Shale, Depth,TOC, and Thermal Maturity, Austral / Magallanes Basin, Argentina and
Chile
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Reservoir Properties (Lower Inoceramus Shale). The Lower Cretaceous Lower
Inoceramus Formation (Tithonian-Aptian), considered the primary source rock in the Austral-
Magallanes Basin, contains black organic-rich shales that are approximately 200 m thick, 2 to 3
km deep, with 0.6% to 2.0% TOC consisting of Type Il and Il kerogen. The Estancia Los
Lagunas gas condensate field in the southeast measured a 0.46 psi/ft pressure gradient with
elevated temperature gradients in the Serie Tobifera Fm, immediately underlying the Lower

Inoceramus equivalent.*

Resources (Lower Inoceramus Shale). Based on the above geologic properties, the
average resource concentration for the Lower Inoceramus Shale in the Austral-Magallanes
Basin is approximately 86 Bcf/mi>. The total risked shale gas in-place is estimated at 420 Tcf,
due the large prospective area. The risked technically recoverable resource is estimated at
about 84 Tcf.
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Reservoir Properties (Magnas Verdes Shale). The Lower Cretaceous (Aptian-Albian)
Magnas Verdes Formation comprises marine mudstones and marl with 0.5% to 2.0% TOC,
including a rich 30-40 m thick basal section, and Type II-lll kerogen. A 0.46 psi/ft pressure
gradient and temperature gradient of 6.4°C/100 m was assumed. Lacking detailed data, many
of the other reservoir properties of the Magnas Verdes Shale were carried over from the Lower

Inoceramus Shale.

Resources (Magnas Verdes Shale). The average resource concentration for the
Magnas Verdes Shale in the Austral-Magallanes Basin is approximately 72 Bcf/mi®. The total
risked shale gas in-place for this aerially extensive target is estimated to be 351 Tcf, with risked

technically recoverable resources of 88 Tcf.

Parana-Chaco Basin (Brazil, Paraguay, Uruguay, Argentina, Bolivia)

Geologic Characterization. The very large (>500,000-mi®) frontier Parana-Chaco
Basin complex covers most of Paraguay and parts of southern Brazil, Uruguay, northern
Argentina, and southern Bolivia. It is an intra-cratonic foreland basin broadly similar in origin to
the Neuquen and other South American basins east of the Andes Mountains. On the Brazil
(Parana) side of the basin, the surface is blanketed by thick plateau basalt flows which are
impermeable to seismic monitoring, oil and gas production is very limited. Less than 150

exploration wells have been drilled in this basin.

The Parana-Chaco Basin contains a thick sequence of primarily marine Paleozoic rocks
that are overlain by mostly continental Mesozoic deposits, Figure IV-11.*" Devonian to
Carboniferous rocks were deposited in a westward-regressing sequence of marine, transitional
and continental facies. ARI’s analysis indicates that large shale gas potential exists within the
8,000 to 12,000-foot thick Devonian Los Monos Formation in the Carandaity and Curupaity sub-
basins of Paraguay, which include black, organic-rich, shallow-marine deposited shales. Scarce
geochemical data suggest 0.5% overall average TOC for the entire Los Monos, but richer zones

are likely to be present in this thick and poorly documented unit.

Structural highs partition the Parana-Chaco Basin into sub-regions. The Ascuncion Arch
separates the 250,000-km? Chaco Basin in Paraguay from the Parana Basin in Brazil.
Structural uplifts in the Chaco Basin have high geothermal gradients and are gas-prone.
Structure is relatively simple, with scattered mainly vertical normal faults and none of the

thrusting typical of Andean tectonics further to the west.
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Figure IV-11. Stratigraphy, Parana-Chaco Basin
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Natural gas generated by Devonian marine shales sourced conventional Carboniferous—
Permian reservoirs of the Itarare” Group, which are thick, sand-rich units that were deposited
during the Carboniferous—Permian glaciation.** These source rock shales reach thicknesses of
8,000 feet and 12,000 feet in the Carandaity and Curupaity sub-basins, respectively, in central
Paraguay. Within this thick sequence, the Devonian San Alfredo Shales appear to be most
prospective, comprising a lower sandy unit and an upper thick, monotonous black shale that

formed under shallow marine conditions.>?
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An exploration well in the Curupaity sub-basin measured 0.3 to 2.1% TOC in this unit.
Independent E&P Amerisur reports TOC of 1.44% to 1.86% in the Devonian Los Monos Fm in
the Curupaity sub-basin.** Depth to the Los Monos Shale can exceed 10,000 feet (3,000 m) in
deep synclines such as the San Pedro Trough, Figure 1V-12.

Figure IV-12. Parana-Chaco Basin
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The Devonian appears to be the most prospective source rock shale in the Parana-
Chaco Basin. It is exceptionally thick in southern Bolivia but consists mainly of coarse-grained
sandstones there. The thickest Devonian section (8,339 feet) penetrated in the Chaco Basin
was in the Pure Oil Co. Mendoza-1 well. The Los Monos marine shale accounted for about

8,200 feet of this section.*®
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Reservoir Properties (San Alfredo and Equivalent Shales). The San Alfredo is
exceptionally thick (as much as 12,000 feet), of which only 2,000 feet was assumed to be
organically rich. The prospective area also is large, perhaps 10% of the basin, or 50,000 mi°.
Faulting is not extensive within the basin, thus relatively little area is sterilized due to structural
complexity. The shale matrix reportedly consists primarily of brittle minerals such as calcite,
dolomite, albite feldspar, ankerite, quartz as well as significant rutile and pyrite. Though clays
are present, mainly illite, kaolinite and chlorite, they are less common.* Temperature gradients
range from elevated 1.9°F/100 feet on structural highs to much lower 1.0°F/100 feet in the

Carandaity sub-basin.

Amerisur reported that the Devonian Lima Fm has good (2-3%) TOC but R, of only
0.87% at their conventional exploration block in Paraguay. In Brazil, the equivalent Devonian
Ponta Grossa Fm is up to 600 m thick and includes shales with 1.5% TOC, but is thermally
immature in the north part of the basin. The southern part of the Parana Basin has basaltic
intrusions that may have boosted shale maturity, generating condensate and natural gas, but

also complicate drilling and seismic.

Resources (San Alfredo and Equivalent Shales). Based on the above geologic
properties, the average resource concentration for the San Alfredo Shale in the Parana-Chaco
Basin is estimated at 347 Bcf/mi?, due mainly to the great thickness of this Devonian shale.
Heavily discounting this play due to poor data control, slightly low thermal maturity, and
uncertainty about net thickness still yields a considerable 2,083 Tcf of risked shale gas in-place.

Risked technically recoverable resources are estimated at about 521 Tcf, Table IV-1.

Natural Gas Profile

With total recoverable resources initially estimated at 1,195 Tcf, shale gas could
contribute significant supplies to the natural gas sector of southern South America. Each of the
six countries profiled has small but expanding natural gas production and transportation

industries that could accommodate shale gas development.

ARGENTINA

Argentina produced about 4.3 Bcfd of natural gas during 2009 but became a net
importer in 2008. Gas production in the country is centered on the Neuquen, Golfo San Jorge,
and Austral basins, where extensive pipeline systems are in place. Argentina’s proved reserves

of natural gas have declined by 50% during the past decade to 13.3 Tcf in 2009. However,
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starting mid-2010 the country allowed unconventional gas production to be sold at higher prices
($5/MMBtu). This new “Gas Plus” policy is having a positive impact: Repsol-YPF recently

announced discovery of 4.5 Tcf of reserves in tight sandstone reservoirs.*’

Among all of Argentina’s assessed basins, ARI estimates a risked shale gas in-place of
2,732 Tcf. This includes 1,165 Tcf in the Nequen Basin, approximately 430 Tcf in the San Jorge
Basin, 483 Tcf in the Austral-Magallanes Basin, and finally the Parana-Chaco Basin with 654
Tcf. The cumulative risked recoverable resource for Argentina totals 774 Tcf, with individual

region allocations of 408, 95, 108, and 164 Tcf for the above basins, respectively.

BOLIVIA

Natural gas production in Bolivia amounted to 446 Tcf in 2009, with only 100 Tcf being

consumed domestically. The country’s proved reserves were last reported at 27 Tcf.

Based on limited data, a risked resource of 192 Tcf was assigned to Bolivia, solely
derived from the Devonian-age shales of the Parana-Chaco Basin. Ultimately, about 48 Tcf of

risked recoverable gas in-place was estimated for the country.

BRAZIL

Brazil produced an average 446 MMcfd of natural gas in 2008, mostly from the offshore
Campos Basin. Petrobras is the dominant producer, controlling about 90% of Brazil's 12.9 Tcf
of proved reserves and operating the country’s 4,000-mile gas pipeline system, which is
concentrated in the southeast and northeast. The country consumed 835 MMcfd in 2008,
importing the balance mainly from Bolivia. The industrial sector accounted for 80% of Brazil's

natural gas consumption, though gas-fired power generation is growing rapidly.

All of Brazil's assessed shale gas potential lies within the vast Parana-Chaco Basin, with

an estimated 906 Tcf in risked gas in-place and 226 Tcf of technically recoverable resources.

CHILE

Chile has limited natural gas reserves (3.5 Tcf), concentrated in the Magallanes Basin in
the extreme southeastern part of the country, far from the dominant Santiago gas market. The
country produced an average 170 MMcfd in 2009 and imported an additional 230 MMcfd, mostly

through its two LNG regasification terminals.
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The Early Cretaceous shales of the Austral-Magallanes Basin comprise Chile’s
prospective shale gas resource, approximately 287 Tcf of risked gas in-place. Technically

recoverable gas is estimated at 64 Tcf.

PARAGUAY

Paraguay has no natural gas production or significant proved reserves, nor any
measurable consumption. Thus, the addition of nearly 249 Tcf of potential risked gas in-place
(62 Tcf recoverable) from Devonian shales of the Parana-Chaco Basin could fundamentally

change the domestic energy outlook in Paraguay.
URUGUAY

Much like its neighbor to the north, Uruguay reportedly had no natural gas production or
proved reserves, its small consumption of 1 Tcf consisted entirely of imports. ARI's shale gas
analysis places approximately 83 Tcf of risked gas in-place in Uruguay, all from the Parana-

Chaco Basin. Risked recoverable resources for the country are 21 Tcf.

Exploration Activity

Initial shale exploration drilling is underway in Argentina’s Neuquen Basin, led by
Apache and Repsol. Apache Corporation and YPF (Repsol) are partnered in the development
of unconventional resources (including shale) in the Neuquen and Austral basins. Counting the
acreage yet to be awarded from its three recent bid wins in the Neuquen, Apache controls
approximately 1.6 million gross acres (900,000 net acres) in the basin that it considers to be

prospective for shale gas.

As of December 9, 2010, Apache reported drilling Latin America's first horizontal multi-

fracture well into a shale gas target.*®

The company also has performed three hydraulic fracture
stimulation jobs in shale intervals (probably in vertical wells) and recovered cores of source
rocks for laboratory analysis. In addition, Apache and Repsol have extensive 3D seismic
coverage in the basin. Apache has not yet publicly estimated the shale gas resource potential

of its Argentine blocks.

Independent E&P Apco Oil & Gas, 69% owned by Wiliams, also is active in the
Neuquen Basin. Apco plans to test the Vaca Muerta Shale in two exploration wells at the
Coiron Amargo block during 2011.%® The company also holds onshore conventional oil and gas

leases in the Chaco, Golfo San Jorge and Austral basins.
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In October 2009 Schuepbach Energy LLC (Dallas) signed a one-year prospecting
contract - the first of its kind in Uruguay -- with government-owned ANCAP on a 10,000-km?
area in north-central Uruguay. Schuepbach plans to conduct geochemical analysis of shale
potential, which could lead to a production sharing contract on the block. The target is

Devonian-age shale.
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V. POLAND

INTRODUCTION

Active levels of shale gas leasing and exploration are already underway in Poland. The
target is the Lower Silurian-Ordovician organically rich shales, present in the Lower Paleozoic
sedimentary basin that exists as a northeast to southwest band through the center of the
country. The shales are deposited in three basins — The Baltic in the north, the Lublin in the
south, and the Podlasie in the east, Figure V-1. The organically rich shales in these three

basins appear to have favorable characteristics for shale gas exploration.

Figure V-1. Major Shale Gas Basins of Poland
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We estimate that Poland has 792 Tcf of risked shale gas-in place, 514 Tcf in the Baltic
Basin, 222 Tcf in the Lublin Basin and 56 Tcf in the Podlasie Basin. We estimate a risked

technically recoverable shale gas resource of 187 Tcf from these three basins, Table V-1.

Table V-1. Shale Gas Reservoir Properties and Resources of Poland

o Basin/Gross Area Baltic Basin Lublin Basin Podlasie Basin
g (101,611 mi?) (11,882 mi?) (4,306 mi?)
§ Shale Formation Lower Silurian || Lower Silurian Lower Silurian
oo
Geologic Age Llandovery Wenlock Llandovery
w2 Prospective Area (mi2) 8,846 11,660 1,325
g Interval 330 - 820 330-1,115 360 - 720
W [Thickness (ft) [Organically Rich 575 415 540
S Net 316 228 297
z Interval 8,200 - 16,400 6,560 - 13,450 5,740 - 11,350
o |Depth (ft)
Average 12,300 10,005 8,545
5 & [Reservoir Pressure Overpressured || Overpressured Overpressured
2 T |Average TOC (wt. %) 4.0% 1.5% 6.0%
ﬁ S |Thermal Maturity (%Ro) 1.75% 1.35% 1.25%
= o Clay Content Medium Medium Medium
g GIP Concentration (Bcflmiz) 145 79 142
o |Risked GIP (Tcf) 514 222 56
& |Risked Recoverable (Tef) 129 44 14
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BALTIC BASIN

Geologic Characterization

The Baltic Basin covers an area of approximately 102,000 square miles area in Poland,
Lithuania, Russia, Latvia, Sweden and the Baltic Sea. Its southwestern border is formed by the
Trans-European Fault Zone. Paleozoic sediments compose 75% of the basin fill, with the
Silurian strata most prevalent’. The southwest margin of the Baltic Basin received very thick
sediments of marine deposits as the basin subsided during the late Ordivician-Silurian collision
of the Avalonia and Baltica tectonic plates. Anoxic conditions in the deep marine environment of
the early Silurian allowed for the deposition of thick layers of organic rich shale, which were
subsequently buried to depths sufficient to thermally mature the shales into the wet to dry gas

window.

The deposition of the Silurian-age shales occurred along the Trans-European fault zone
bounding the Baltic Basin, continuing southeast into the present day Lublin and Podlasie basins.
These two basins share the same regional depositional environment as the Baltic Basin but are
differentiated by local geologic features, such as the Mazury-Belarus High and regional tectonic
faulting. Subtle differences in elevation and marine conditions created by these features caused
organically rich shales to be deposited at different periods of the Silurian. In the Baltic and
Podlasie basins, the most prospective shale intervals occur in the Lower Silurian Llandovery. In
the Lublin Basin, organically rich shales were deposited in the slightly younger and thicker

Wenlock strata.

The 8,850 mi’ shale gas prospective area in the Baltic Basin was determined using the
depth and thermal maturity of the Llandovery Formation. The formation shallows to the
northwest, where its prospective area is limited by lack of sufficient thermal maturity. In the
deep, western margin of the basin, the Llandovery Formation is highly thermally mature, with Ro
values greater than 5.0%. However, the basin becomes very deep in this area. In the western

areas, the prospective area is limited by the 5,000m depth contour interval, Figure V-2.

Reservoir Properties (Prospective Area)

Silurian. The Lower Silurian Llandovery-Wenlock graptolitic black shales are the main
shale gas targets in the Baltic Basin, Figure V-3. Drilling depths to the base of the Silurian can

be as deep as 18,000 feet, but generally range from 8,200 to 16,400 feet over the prospective
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area, Figure V-4. While the gross interval of the total Silurian formation covers 3,200 feet, the
organically rich Llandovery strata has a gross thickness of 330 to 820 feet?. Based on well log
data, ARI assumes a regional net to gross ratio of 55%, resulting in a net shale thickness of 316
feet®. Total organic content (TOC) in the prospective area can reach as high as 10%, but
generally averages 4% for the net shale thickness investigated. Clay content is low in the Baltic
Basin, with silica content generally above 50%. Thermal maturity varies in the basin, from over
5% in the northwest to below Ro 1% in the north east portions of the Baltic Basin. High Ro
values indicate that some of the gas in the formations may have been converted to CO..
However, in the prospective area, the Ro averages 1.75% and is in the dry gas window. A thin
section of Ordovician Shale exists below the Silurian and is judged to be prospective. However,
it is not sufficiently distinct from the Silurian to merit separate discussion and is included with the

Silurian Shale*.

Figure V-2. Onshore Baltic Basin, Lower Silurian Llandovery Shale Depth and Structure
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Figure V-3. Baltic Basin Stratigraphic Column5 Figure V-4. Baltic Basin Depth and Structure Cross Section
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Resources

The Baltic Basin Silurian Shale has a high resource concentration of 145 Bcf/mi®. Given
a 8,850 mi® prospective area, the risked shale gas in-place is 514 Tcf. Based on the favorable
reservoir properties and mineralogy, we estimate a risked technically recoverable shale gas
resource of 129 Tcf for the Baltic Basin, Table V-1.

Activity

The majority of Poland’s oil and gas fields are located in the southern Carpathian region.
The northern region of the country is relatively undeveloped, excepting a group of oil and
condensate fields approximately 75 miles northwest of Gdansk and a cluster of small fields

offshore®.

The shales in the Baltic Basin are being actively leased by numerous large international
and smaller independent exploration companies, as well as the country’s national gas entity,
PGNIG, Figure V-5. The most active company in the basin is 3Legs Resources (a subsidiary of
Lane Energy Poland). Conoco Phillips has partnered with 3Legs to jointly evaluate the shale
potential of the Baltic Basin. In late September 2010, the joint venture drilled the basin’s first
shale exploration wells, Lebian LE1 and tegowo LE1. The wells were drilled vertically through
the Silurian and Ordovician formations. No production information or other results have been
released, as of the date of this report. A joint venture led by BNK Petroleum is planning to drill
an exploratory well in October, also targeting the Silurian and Ordovician formations in the

basin.

Talisman Energy has plans to drill three shale gas wells and perform seisimic testing
during the next two years. Marathon Oil has one concession in the Baltic Basin in which it plans
to drill one well and perform 2D seismic. Both Chevron and ExxonMobil have accumulated
acreage in the Baltic Basin and have reported plans to drill exploratory wells within the next
year. In addition to the major exploration companies, a number of smaller firms are acquiring
and testing acreage in the Baltic Basin, including Realm Energy International, San Leon Energy

and Aurealian Oil and Gas.
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Figure V-5. Poland Shale Gas Leasing Activity’
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LUBLIN BASIN

Geologic Characterization

The Lublin Basin contains very similar Silurian depositional strata to the Baltic Basin,
though regional tectonic events and rifting during the Devonian created a different maturity and
depth profile than observed for Silurian Shale in the Baltic Basin. The basin covers an area of
10,010 square miles. It is bounded by the Grojec fault to the north (which separates it from the
Baltic Basin), the Trans-European Fault Zone to the west, the Mazury-Belarus high in the east,
and (for this study) the Polish-Ukrainian Border to the south. The Lublin Basin transitions from a
Cambrian active rift basin in the north to a post rift thermal sag basin in the southeast, with

moderate faulting throughout.

The primary shale gas target in the Lublin Basin is the Lower Silurian Wenlock
Formation. Maturity and depth measurements suggest that almost the entire 11,880 square mile
area may be prospective for shale gas development, though the recoverability of shale gas may
be limited by regional faults. A small, 220 square mile area was excluded from the analysis due
to the possibility of Silurian erosion, resulting in a prospective area of 11,660 square miles,
Figure V-6.
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Figure V-6. Lublin Basin Shale Gas Prospective Area
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Lower Silurian. The shale gas potential of the Lublin Basin exists in a 2,000 foot section
of the lower Silurian Shale, from the Ludlow through Llandovery, Figure V-7. A thin interval of
Ordovician Shale is also thought to be prospective, but due to its similarity to the Silurian Shale,
it has been combined with the Silurian. Drilling depths to the Silurian range from 6,500 feet to
3,450 feet over most of the prospective area®. The prospective shale section thickens from east
to west, from 330 feet to 1,115 feet and has an organically rich gross thickness of 415 feet with
a net thickness of 228 feet, Figure V-8. Total organic content in the Wenlock Formation is lower
than in the slightly older Llandovery Formation, ranging from 1% to 1.7% with an average of
1.5%. Thermal maturity ranges from over mature (>2.5%Ro) in the central areas of the trough to
the threshold of the wet gas window (1.0% Ro) on the basin’s eastern boundary. Average

thermal maturity is 1.35% Ro in the prospective area.
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Figure V-7. Lubin Basin Stratigraphic Figure V-8. Lublin Basin Fault Map and Cross Section®
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Resources

The Silurian and Ordovician shales of the Lublin Basin contain a moderate resource
concentration 79 Bcf/mi?. However, considerable variability exists in shale thickness and organic
content from east to west in the basin. As such, the shale gas resource concentration will vary
considerably from this average value. Given a 11,660 mi® prospective area, the risked shale gas
in-place is 222 Tcf. Based on reservoir properties and mineralogy, we estimate a risked

technically recoverable shale gas resource of 44 Tcf, Table V-1.

Activity

The Lublin Basin is the site of modest oil and gas production from a small group of oil
and gas conventional fields. As in the Baltic Basin, a number of international firms and Poland’s
state owned gas company (PGNiG) are actively evaluating the Lublin Basin’s shale gas
potential. In early August, Halliburton completed Poland’s (and the Lublin Basin’s) first shale gas
well fracturing operation on the Markowola-1 exploratory well for PGNiG. Production and test
results have not yet been released. At least six other exploration companies have acquired
unconventional gas exploration concessions in the basin, including ExxonMobil, Chevron,

Marathon Oil and others, Figure V-5.
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PODLASIE BASIN

Geologic Characterization

The Podlasie Basin (Podlasie Depression) is an isolated section of the Lower Paleozoic
sedimentary basin, east of the Baltic and Lublin basins. It is bounded on the north and south by
the Mazury-Belarus high and (for this study) by the Polish-Belorussian border on the east. The
Silurian interval in the Podlasie Basin crops out in the east, just inside the border with Belarus,

and deepens rapidly to the west, where active shale gas leasing is underway.

The shale gas target in the Podlasie Basin is the lower Silurian Llandovery Formation,
Figure V-5. Based on depth and thermal maturity data, ARI has established a 1,325 square mile
prospective area for the Podlasie Basin shale. The prospective area is limited on the east by the

1.0 Ro% contour line.

Reservoir Properties (Prospective Area)

Lower Silurian. In the prospective area of the Podlasie Basin shale thickness ranges
from 360 feet to 720 feet. Within this larger trend is an organically rich section of 540 feet, with a
net thickness of 297 feet. Depth to the base of the Silurian Shale ranges from 5,740 feet to
11,350 feet, with an average of 8,545 feet, Figure V-8. Total organic content is much higher in
the Podlasie Basin than in the Baltic or Lublin, reaching 20% in places. Average TOC content in
the basin is 6%. Thermal maturity in the basin decreases toward the east, where it quickly

leaves the gas window. Average Ro% in the prospective areas of the Podlasie Basin is 1.25%.

Resources

Our analysis suggests the Silurian Shale of the Podlasie Basin contains an attractive
resource concentration of 142 Bcf/mi®. Given a 1,330 mi® prospective area, the risked shale gas
in-place is 56 Tcf. Based on moderately favorable reservoir properties and mineralogy, we

estimate a risked technically recoverable resource of 14 Tcf, Table V-1.
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Figure V-8. Podlasie Basin Depth to Base of Llandovery Shale
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Activity

Though no exploratory wells have yet been drilled into the Silurian Shale in the Podlasie
Basin, it is being actively leased, Figure V-5. ExxonMobil holds the largest lease position in the

basin, with three shale gas exploration concessions.

Poland is a large net importer of natural gas. Of the 577 Bcf of natural gas consumed in
Poland in 2009, 350 Bcf (61%) was imported, almost all of which was supplied from Russia.
After a plateau in production from 2004 to 2007, the country’s natural gas production has again

begun to decline. Annual production is currently 0.6 Bcfd, from proved reserves of 6 Tcf™°.

Realizing the potential for unconventional natural gas to support its declining
conventional gas production, the Polish government has shown strong support for shale gas
drilling. It has put into place very attractive fiscal terms for gas development, although

infrastructure and regulatory issues remain as barriers to efficient development. Development of
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Poland’s large shale gas technically recoverable resource of 187 Tcf could significantly increase

the country’s natural gas reserves and internal gas production.
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VI. EASTERN EUROPE

INTRODUCTION

Outside of Poland, the shale gas potential of Eastern Europe has not been widely
explored. However, several basins contain promising shale gas targets, such as the northern
Baltic Basin in Lithuania, the southeastern extent of the Lublin Basin into Ukraine and the
Dnieper-Donets Basin in Ukraine, Figure VI-1. Additional potentially prospective basins include

the Pannonian-Transylvanian Basin in Hungary and Romania, and the Carpathian-Balknian in

Southern Romania and Bulgaria, but were not assessed by the study, Figure VI-1.
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Figure VI-1. Shale Gas Basins of Eastern Europe
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For the three Eastern European basins for which ARI was able to establish a prospective

area, we estimate a risked shale gas in-place of 93 Tcf in the Baltic Basin, 48 Tcf in the
Dnieper-Donets Basin, and 149 Tcf in the Lublin Basin, Table VI-1. Of this 290 Tcf of risked gas

in-place, ARI estimates a technically recoverable shale gas resource of 65 Tcf, Table VI-1. Not

enough information is available on the key shale reservoir properties in the Pannonian-

Transylvanian and Carpathian-Balkanian basins for conducting a reliable resource assessment.

Table VI-1. Reservoir Properties and Resources of Eastern Europe

o Basin/Gross Area Baltic Basin Dnieper-Donets Lublin Basin
= (101,611 mi?) (38,554 mi?) (26,500 mi?)
e
§ Shale Formation Lower Silurian Rudov Bed Lower Silurian
Geologic Age Silurian Carboniferous Silurian
w2 Prospective Area (miz) 3,071 7,134 7,850
g Interval 393-524 26 - 230 1,312 - 3,260
W |Thickness (ft) |Organically Rich 459 128 415
S Net 284 102 208
z Interval 5,904 - 7,544 9,840 - 16,400 3,280 - 16,400
o |Depth (ft)
Average 6,724 13,120 9,840
= & |Reservoir Pressure Overpressured Overpressured Overpressured
2 & |Average TOC (wt. %) 4.0% 4.0% 2.5%
§ S |Thermal Maturity (%Ro) 1.20% 1.30% 1.35%
= a [Clay Content Medium Medium Medium
g GIP Concentration (Bcflmiz) 101 42 79
2  |Risked GIP (Tcf) 93 48 149
& [Risked Recoverable (Tcf) 23 12 30
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BALTIC BASIN

Geologic Characterization

The Baltic Basin (Baltic Syneclise) is a large marginal synclinal basin located in the
southwestern part of the East European Craton and a major structure of the three Baltic States.
The basin is about 700 km long and 500 km wide. The basin deepens along its NE to SW axis;
depth below sea level of the Pre-Cambrian basement increases from a few hundred meters in
Estonia to 1,900 m in southwestern Latvia, 2,300 m in western Lithuania, and 5,000 m in
Poland. This chapter will focus on the non-Polish section of the basin. (The Polish Baltic Basin

is discussed in Chapter V.)

The shale gas target in the Baltic Basin is the lower Silurian marine shale package,
which, though less mature than in Poland, has favorable characteristics for shale gas
development. ARI defined a 3,070 mi® prospective area for the Baltic Basin outside of Poland

using the 1% Ro contour line, Figure VI-2.

Reservoir Properties (Prospective Area)

Depths to the base of the Lower Silurian Shale range from 5,900 feet to 7,550 feet over
the prospective area, averaging 6,720 feet, Figure VI-3. While the gross interval of the total
Silurian formation can reach 3,600 ft, the organically rich, Lower Silurian strata has a gross
thickness of 459 and, a net thickness of 284 ft, Figure VI-4." Total organic content (TOC) in the
prospective area ranges from 2% to 6% with an average of 4%. The thermal maturity data

ranges from 1.0% to 1.9% Ro, averaging 1.2%>.

Resources

Our analysis suggests the Lower Silurian Shale of the Baltic Basin contain a moderate
resource concentration of 101 Bcf/mi?. Given a 3,071 mi® prospective area, the risked shale gas
in-place is 93 Tcf. Based on favorable reservoir properties and mineralogy, we estimate a

risked technically recoverable resource of 23 Tcf, Table VI-1.

February 17, 2011 VI-3 @

Advanced Resources
International, Inc



World Shale Gas Resources: An Initial Assessment

Figure VI-2. Baltic Basin Structure Map
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Figure VI-3. Baltic Basin Stratigraphic Figure VI-4. Baltic Basin Cross Section3:
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Activity

Outside of Poland, the shale gas potential of the Baltic Basin has yet to be explored.
Government representatives of the Lithuanian government have noted they are aware of the

potential, but leasing is not underway in the country.

In its northern, thermally immature areas, the shallow high kerogen content shale in the
Baltic Basin are mined for use for power and chemical production. The Ordovician/Silurian

Kukersite oil shale in Estonia has been under development since WWII.
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DNIEPER-DONETS BASIN

Geologic Characterization

The Dnieper-Donets (Dniepr-Donets) Basin forms a NW-SE trend through central
Ukraine and into Russia. It is part of the larger Pripyat-Dniepr-Donets intercratonic rift basin,
which trends further NW into Belarus. The basin is flanked by the regional highs: the Ukrainian
Shield (to the south) and the Voronezh Massif (to the North).

After extensive rifting, faulting and volcanic activity during the basin’s formation in the
Devonian, it entered a period of calm, marine sedimentation during the Carboniferous. Shales
deposited during this time are likely the source of hydrocarbons produced from Permian and
Carboniferous reservoirs in the basin. Uplifting during the Permian created stress fractures on
the basin margin, which penetrated localized areas of the lower Carboniferous strata.
Furthermore, salt layers deposited in the Permian likely contributed to a regional overpressuing

of the underlying Carboniferous strata.

The geochemical analysis of the natural gas produced in this basin suggests it was
generated from marine shales of Carboniferous-age. These data also suggest the dominant
shale gas formation in the Dnieper-Donets Basin is the “Rudov Bed,” a Lower Carboniferous
(Visean) black shale, Figure VI-6. Today, the Dnieper-Donets Basin provides approximately
90% of Ukraine’s oil and gas, from over 140 producing fields. Additional shale gas potential
may exist in Frasnian (Upper Devonian) shale and carbonate packages in more isolated

portions of the basin, but insufficient data were available to estimate their potential.

The 7,134 mi’ prospective area used in this report is based on depth limits and shale
thermal maturity. The prospective area along the eastern margin of the basin is formed by the
16,400 foot depth cutoff, the western boundary is formed by the 9,840 foot depth cutoff, which
corresponds to the beginning of the gas window for Lower Carboniferous strata®. Thermal
maturation in the deeper areas of the basin is not well understood, some data suggest areas of
comparatively little heat flow in the central areas of the basin, which could limit the extent of the
shale formation inside the gas window. ARI has compensated for this thermal maturity

uncertainty in its estimation of risked gas in-place.
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Reservoir Properties (Prospective Area)

Carboniferous (Rudov Bed). The prospective area of the Dneiper-Donets Basin is
most limited by its great depth. The Carboniferous strata deepens toward the center of the
basin, reaching over 12 kilometers below the surface in the basin center, Figure VI-7. As such,
the prospective area defined in this study is confined to the north and lateral sections of the
basin, with depth above 16,400 feet, Figure VI-5. Insufficient data was available to establish a

prospective area in the southeastern portion of the basin.

Depths to the Rudov Bed Formation range from 9,840 feet to 16,400 feet over the
prospective area, with an average of 13,120 feet4. The gross interval of the organically rich
Rudov Bed Formation is between 26 feet to 230 feet, averaging 130 feet.” ARI assumes an 80%
net to gross ratio, based on the formation’s relatively stable marine sedimentary environment.
Total organic content in the prospective area ranges from 2% to 6% with an average of 4%.
Vitrinite reflectance data suggest this formation is in the wet to dry gas window, with Ro values
between 1% to 1.6%, Table VI-14.
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Figure VI-5. Dnieper-Donets Shale Gas Prospective Area
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Resources

The Rudov Bed Shale in the Dnieper-Donets Basin contains a moderate resource
concentration of 42 Bcf/mi?. Given a 7,134 mi? prospective area, the risked shale gas in-place
is 48 Tcf. This estimate accounts for development risks associated with the faulted margins of
the basin, its depth and uncertain thermal maturity profile. Based on moderately favorable
reservoir properties and mineralogy, we estimate a risked technically recoverable shale gas
resource of 12 Tcf, Table VI-1.
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Figure VI-6. Dnieper-Donets Basin Stratigraphic Figure VI-7. Central Dnieper-Donets Basin
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Activity

The Dnieper-Donets Basin is under investigation for unconventional gas potential. At
present, shallower CBM deposits in the eastern area of the basin are the primary exploration
targets, but firms are also studying the deeper shale gas potential in the basin. EuroGas, an
independent E&P company, recently partnered with Total to explore the shale gas potential of
its recently acquired lease concessions in the Dnieper-Donets Basin. The firm intends to drill its

first horizontal wells some time in 2010. No results have yet been reported.

Major E&P companies such as Shell and Exxon Mobil have also expressed interest in
Ukrainian shale gas potential, but have not specified which areas they intend to explore. The
large, U.S. E&P company, Marathon Oil, exited Ukraine in 2008°.
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UKRANIAN LUBLIN BASIN

Geologic Characterization

The Ukrainian Lublin Basin is the southern extension of the Lower Paleozoic
sedimentary basin deposited along the western slope of the Baltica paleocontinent. It is
bounded by the Grojec Fault in central Poland (which separates it from the Baltic Basin), the
Trans-European Fault Zone to the west, the Mazury-Belarus high in the east, and, in this
analysis, by the Romanian border to the south. The Ukrainian portion of the Lublin Basin covers

an area of 26,500 mi?.

The primary target in the Lublin Basin is shale in the Silurian-Ordovician section. Data
on Ukrainian geology is sparse, so ARI relied heavily on data from the Polish Lublin Basin to
establish a prospective area for the Silurian Shale in the Ukraine. Based on continuation of
depth and maturity trends observed from Poland, ARI assumes 7,850 mi? of the Ukrainian
Lublin Basin to be prospective. The basin becomes shallow to the North and east, and exhibits
uplifted faulting to the south and west, limiting the prospective area to a deep, thick centralized

area in the Northwest of Ukraine, Figure VI-8.

Reservoir Properties (Prospective Area)

Silurian Depths to the Lower Silurian Shale range from 3,280 feet to 16,400 feet over
the prospective area, with an average of 9,840 feet. The gross interval of the total Lower
Silurian Shale Formation is between 1,310 ft to 3,260 ft, Figure VI-9; the organically rich strata
has an gross thickness of 415 ft and a net thickness of 208 ft, based on data from the Polish
Lublin Basin. Total organic content in the prospective area ranges from 1% to 3% with an
average of 2.5%. Vitrinite reflectance data suggest this formation is in the wet to dry gas

window, with Ro values between 1% to 1.7%, Table VI-1°.
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Figure VI-8. Lublin Basin Shale Gas Prospective Area
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Figure VI-9. Lubin Basin Stratigraphic Column9
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Figure VI-10. Lublin Basin Geology and Cross Section9
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Resources

The Silurian black shale in the Lublin Basin of Ukraine contains a resource concentration
of 79 Bef/mi®. Given a 7,850 mi? prospective area, the risked shale gas in-place is 149 Tcf.
Based on moderately favorable reservoir properties and mineralogy, we estimate a risked

recoverable technically resource of 30 Tcf, Table VI-1.

Activity

To date, the major exploration companies have focused their Lublin Basin exploration
activities in Poland, favoring the country’s more transparent business climate. The only
international firm actively exploring the Ukrainian Lublin Basin is Eurogas, Inc, which plans to

test for commercial gas potential from CBM and shale formations.
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P ANNONIAN-TRANS YLVANIAN BASIN

Geologic Characterization

The Pannonian-Transylvanian Basin is a large, Neogene-age, extensional basin
covering a 124,000 square mile area largely inside of Hungary, Romania and Slovakia, Figure
VI-8. It is bounded to the north and east by the Carpathian Mountains and to the south and
west by the Dinaric and Eastern Alps, Figure VI-11. During the Oligocene, the basin was a vast
sea, at one point connected to the Mediterranean. The marine sediments deposited in this
basin are believed to be the source rocks for much of Hungary’s hydrocarbon reserves, Figure
VI-12. A number of uplifted basement blocks separate the Pannonian Basin into subbasins,
including the Great Hungarian Plain (site of the Mako Trough, a tight gas target), Danube Basin
and Transcarpathian Basin, among others. Each of these subbasins share a similar sequence

of Neogene fill °.

Though the basin is relatively young, it has a very high geothermal gradient, allowing for
organic matter to mature into the oil and gas window, Figure VI-13. However, the shale gas
potential in the basin is low, as most of the regional organically rich source rocks are clay-like
marls that offer limited commercial shale gas exploration potential. In the southeast of the

basin, shale formations are immature and low in organic content'".

Limited data are available from basement shale formations in Jurassic and Cretaceous
strata may have favorable characteristics for shale gas development, though detailed source

rock data is scarce.

Reservoir Properties (Prospective Area)

At this time, insufficient data is available to establish a prospective area for shale gas
formations in the Panonnian-Transylvanian Basin. Shale gas potential is being investigated by
one firm in northern Romania, but geologic data on their lease concessions is not publically

available.
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Figure VI-11. Pannonian-Translyvanian Basin
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Figure VI-12. Pannonian-Transylvanian Basin Stratigraphic Figure VI-13. Generalized Pannonian-Transylvanian Depth and Structure Cross
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Activity

Shale gas exploration in the Pannonian-Translyvanian Basin is still in a very speculative
phase. East West Resources, an Alberta-based E&P company, is targeting shale formations in
the Cretaceous-Jurassic pre-rift basement of the basin. It has applied for lease concessions to
explore the conventional and shale horizons in the northern Romanian portion of the basin and

should receive approval in 2011.
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CARPATHIAN-BALKANIAN BASIN

Geologic Characterization

The Carpathian-Balkanian Basin is a geologically complex basin composed of a series
of mountain nappes, foredeeps and plains in Southern Romania and Bulgaria, Figure VI-16.
The basin is bounded by the Pannonian-Translyvanian Basin to the west, Moldova to the east,
Ukraine to the north and the erosional boundary of the Moesian platform to the south, Figure VI-
14. With access to additional data, the Moesian Platform and Getic depression may prove to
have prospective areas for shale gas development, Figure VI-17. Several strata, including the
Silurian Tandarei formation, Jurassic Dogger Balls and Lias Etropole formations appear to have
high organic content and appropriate levels of maturity for shale gas development, Figure VI-
15",

Reservoir Properties (Prospective Area)

Sufficient data is not currently available to establish the prospective shale gas areas in

the Carpathian-Balkanian Basin.

Figure VI-14. Carpathian-Balkanian Basin Map
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Figure VI-15. Carpathian-Balkanian Stratigraphic Column
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Figure VI-16. Carpathian-Balknian Basin Component Figure VI-17. Carpathian-Balknian Basin Cross Section
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Activity

The shale gas potential of the Carpathian Balkanian Basin was first realized in 2008,
when Direct Petroleum Exploration drilled through a gas-bearing shale formation while targeting
the Alexandrovo sandstone interval. Several firms have since begun exploring the shale gas
potential in Bulgaria, including Park Place Energy Group, Integrity Towers and U.S. super

major Chevron™.

In July 2010, Chevron reported that it secured three shale gas exploration blocks in the
Romanian portion of the Carpathian-Balkanian Basin, totaling 675,000 acres. The company has

not provided a timeline for exploration .

In an official statement after meeting with the Bulgarian government to petition for shale
gas exploration rights, Chevron estimated that it could extract up to 8 Tcf of shale gas in the
country®. Bulgaria’s Energy and Economy ministry estimates that industrial production of

shale gas could commence within 5 to 10 years'’.
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LITHUANIA

Lithuania relies entirely on imports to satisfy its natural gas demand. In 2008, the
country consumed 0.3 Bcfd of natural gas. We estimate that Lithuania has 17 Tcf of gas in-
place (risked) in the prospective area of the Baltic Basin. Of this 17 Tcf, we estimate 4 Tcf could

be ultimately technically recoverable.

RUSSIA (KALININGRAD OBLAST)

Russia has the world’s largest natural gas proved reserves, estimated at 1,680 Tcf in
2009. It is also the world’s largest natural gas exporter. Of the almost 60 Bcfd the country
produced in 2009, it exported 17 Bcfd to Europe. With its large conventional natural gas
resource base, Russia is unlikely to aggressively pursue shale gas reserves, though it likely is

well endowed with these as well.

Within the portion of the Baltic Basin in Russia’s Kaliningrad Oblast, we estimate a
risked GIP of 76 Tcf. Of this 76 Tcf, we estimate 19 Tcf could be ultimately technically

recoverable.

UKRAINE

Like most of Eastern Europe, Ukraine depends on Russian gas to meet its consumption
needs. In 2008, the country consumed 7.8 Bcfd of natural gas, of which 1.9 Bcfd was produced

domestically from 39 Tcf of proved reserves'®.

We estimate that Ukraine has 48 Tcf of gas in-place (risked) in the prospective area of
the Dnieper-Donets Basin and 149 Tcf of gas in-place (risked) in the Lublin Basin. Of this 197
Tcf, we estimate 42 Tcf could be ultimately technically recoverable, representing a large

increase in the country’s current reserve base.
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VII. WESTERN EUROPE

INTRODUCTION

The gas-bearing shales of Western Europe are being actively explored and evaluated by
a host of small to large companies. Numerous shale gas basins exist in Western Europe,
containing Carboniferous, Permian, Jurassic and Ordovician-age shales, Figure VII-1.
Specifically, shale gas leasing is ongoing in France, Germany, the Netherlands, Sweden,
Denmark and Austria (See Chapters VI and V for discussion of Eastern European and Poland

shale gas).

Figure VII-1. Shale Gas Basins of Western Europe
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We estimate a risked gas in-place for the Western European shales assessed by this study of 1,505 Tcf, of which 372 Tcf is
estimated to be technically recoverable, Table VII-1. Because of its large area, the Scandinavian Alum Shale holds the largest shale
gas resource. Shales of the Paris South-East France and North Sea-German basins exhibit favorable characteristics, but contain

comparatively modest resource due to their moderate thickness and/or limited area.

Table VII-1. Shale Gas Reservoir Properties and Resources of Western Europe

France Paris Scandanivia U.K. Northern || U.K. Southern
. . France South-East Basin North Sea-German Basin . Petroleum Petroleum
Basin/Gross Area Basin - . Region
s (61,454 mi) (17,800 mi?) (78,126 mi?) (38,221 mi) System . System.
b (22,431 mi?) (7,644 mi?)
O . " . . .
ﬁ Shale Formation Car::r:::‘::c;us N.L?::ﬁ Liassic Shales Poss:](:::la Nasn:]t:l':ean W;:::ilzn Alum Shale |Bowland Shale| Liassic Shales
Geologic Age Peman Upper Jurrasic | Lower Jurrasic Jurassic Carboniferous| Cretaceous Ordovician || Carboniferous Jurrasic
Carboniferous
2 Prospective Area (mi?) 17,942 16,900 17,800 2,650 3,969 1,810 38,221 9,822 160
g Interval 164 - 7,216 0-1,200 100 - 2,000 25- 350 249- 6,937 25-325 0-459 0- 4,000 1,000 - 1,640
Y |Thickness (ft) |Organically Rich 382 333 525 148 407 112 328 492 415
g Net 115 100 158 100 122 75 164 148 125
.E Depth (f) Interval 8,528 - 13,120 | 3,280- 6,560 | 8,200 - 16,400 || 3,280 - 16,400 | 8,200 - 16,400 3,280 - 9,840 - 3,280- 6,300 | 11,500 - 15,500
Average 10,824 4,920 12,300 9,840 12,300 6,560 3,280 4,800 13,500
£ & |Reservoir Pressure Normal Normal Normal Normal Overpressured] ~ Normal Normal Normal Normal
2 5§ |Average TOC (wt. %) 4.0% 3.5% 2.5% 5.7% 3.5% 4.5% 10.0% 5.8% 2.4%
ﬁ S |Thermal Maturity (%Ro) 1.65% 1.25% 1.45% 1.50% 2.50% 1.25% 1.85% 1.40% 1.15%
= a Clay Content Medium Low Medium Low/Medium Medium Medium Low Medium/High Medium
§ GIP Concentration (Bcflmiz) 47 27 57 33 54 26 77 48 45
§ Risked GIP (Tcf) 303 112 305 26 64 9 589 95 2
& |Risked Recoverable (Tcf) 76 28 76 7 16 2 147 19 1
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PARIS BASIN

Geologic Characterization

The Paris Basin is a large 61,454 mi’ intracratonic basin underlying most of North-
Central France. The basin is bounded on the east by the Vosques mountain range, on the
south by the Central Massif, on the west by the Armorican Massif and, for the purposes of this

study, by the English Channel on the north.

The Paris Basin contains two organically rich shale source rocks: the Toarcian “Schistes
Carton” black shale formation and the Permian-Carboniferous shales. The lower thermal
maturity “Schistes Carton” shales are the source rock for most of the oil produced in the Paris
Basin. These shale source rocks have high organic content, ranging from 1% to 10%
throughout the basin. With thermal maturity ranging between 0.5 to 0.9% Ro, the “Schistes
Carton” shales are still in the oil window and immature with respect to shale gas potential. A
number of firms, such as Toreador Resources, are investigating the shale oil potential of the

Liassic interval in the Paris Basin.

The deeper, more mature Permian-Carboniferous shales are less explored, but have
promising characteristics for shale gas development. These strata were formed by continental
deposits in the rift basins formed after the Hercynian orogeny and subsequent subsidence of the
basin’s granite basement. Based on available data, we have mapped a 17,942 mi’ prospective
area for the shales in the Paris Basin, Figure VII-2. The Northern boundary of the prospective
area follows the 50 meter gross shale isopach line, its southern and eastern border is formed by

the basin edge.

Reservoir Properties (Prospective Area)

Permian-Carboniferous Shales. As shown in Figure VII-3, the Permian-Carboniferous
shales referred to in this report encompass a series of horizons ranging from the Pennsylvanian
(Carboniferous) to late Permian. Detailed geologic data on these shale formations is scarce.

Where information was lacking, we used data from regional analogue basins.

The Permian-Carboniferous shales range from 8,500 feet to 13,100 feet deep, averaging
10,824 feet deep over the prospective area. The shales thicken to the east, ranging from 160
feet thick in the central Paris Basin to over 7,200 feet in isolated sections of the basin’s eastern

margin, Figure VII-4. Average shale interval thickness in the prospective area is assumed to be
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1,150 feet. Due to a lack of well log or other net shale thickness data, we assume one-third of

the formation interval is organically rich, and apply a 30% net to gross factor, consistent with

similar age shales in Poland, to reach an organically rich net shale thickness of 115 feet. Data

on total organic content (TOC) in the prospective area was not available, so TOC data from the

Dniper-Donets Basin, an analogue of similar age and depositional environment was used.

Assumed TOC values range from 2% to 6% with an average of 4%.

The Permian-

Carboniferous shales are in the gas window, with Ro ranging from 1.3% to over 2% across the

pros

pective area”.

Figure VII-2. Prospective Area and Gross Isopach of Permian Carboniferous Shales, Paris Basin
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Our analysis suggests the Permian-Carboniferous shales of the Paris Basin contain a

moderate resource concentration of 47 Bcf/mi?. Risked gas in-place for the Paris Basin is 303

Tcf, The risked technically recoverable shale gas resource is estimated at 76 Tcf, Table VII-1.
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Figure VII-3. East Paris Basin Stratigraphic
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Figure VII-4. Paris Basin Cross Section:
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Activity

While most of the exploration activity in the Paris Basin is targeting the Liassic-age liquid
shale oil plays in the center of the basin, some firms are beginning to acquire acreage in the

eastern portions of the basin, where the Permian-Carboniferous shale gas formation is thickest.

The Moselle Permit (~$4 million dollars; 2,070 miz), first granted to East Paris Petroleum
Development Corp, was acquired by Elixir Petroleum in February, Figure VII-5. While the terms
of the lease do not require the company to drill any wells, Elixr has publically stated that it

intends to investigate the unconventional gas potential (both CBM and shale gas) on its lease®.

Figure VII-5. Moselle Permit, Paris Basin
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SOUTHEAST BASIN
Geologic Characterization

The Southeast Basin is the thickest sedimentary basin in France, containing up to 10km
of Mesozoic to Cenozoic sediments. The basin is bounded on the east and south by the Alpine
thrust belt and on the west by the Massif Central, an uplifted section of the Paleozoic basement,
Figure VII-6.

Local oil and gas seeps discovered in the 1940’s encouraged hydrocarbon exploration
early in the basin. However, despite the drilling of 150 wells in the onshore and offshore
portions of the basin, no significant oil and gas deposits have been found. Recent re-
evaluations of the basin’s potential by the French research institute IFP and others have peaked
interest once again. The deep Jurassic shales and marls present over much of the basin area
appear to have favorable characteristics for oil and gas source rocks. Some limited leasing is

ongoing to test this potential.

This study will focus on the shale gas potential of two formations in the Southeast Basin,
the Upper Jurassic “Terres Niores” black shales, and the Lower Jurassic Liassic black shales.
These shales are composed of Type Il marine organic matter, and were deposited during a time
of subsidence and rifting, when the “Liguro-Piemontais” ocean covered portions of what is now
southern France!. These formations have been evaluated and mapped to establish their
respective prospective areas. The Lower Jurassic shale sequence is prospective throughout
the basin, while well data suggests the Upper Jurassic shales enter the oil window on their
western boundary. ARI calculates a 16,900 mi® prospective area for the Upper Jurassic shale

sequence”.

Reservoir Properties (Prospective Area)

Upper Jurassic “Terres Niores”. The “Terres Niores” black shales are marine shales
deposited throughout the Southeast Basin. They range from 3,300 feet to 6,600 feet deep over
the basin, averaging 4,900 feet, Figure VII-7. The gross interval of the shale reaches 1,200
feet, containing 333 feet of organically rich gross shale and 100 feet of net shale4, Figure VII-8.
Total organic content (TOC) in the prospective area ranges from 1% to 3% with an average of
2%. In the eastern portions of the basin, the “Terres Niores” shale is in the gas window, with Ro
of 1.5%. At the western edges, the shale enters the wet gas/oil window, with Ro of 1%.

Average vitrinite reflectance (Ro) over the prospective area is 1.25% Ro5.
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Lower Jurassic Liassic Shale. The Liassic Shale of the Southeast Basin is deeper,
thicker and generally more mature than the “Terres Niores” Shale, though it has a higher clay
content and is not as brittle. Uplifting along the western margin of the Southeast Basin has
brought the Liassic Shale to a more reasonable depth for exploration. Depth to the Liassic
Shale package ranges from 3,300 feet to 16,300 feet deep over the basin, with most of the
prospective area at an average depth of 9,800 feet. Figure VII-8. The gross interval of the
shale ranges from 100 to 2,000 feet with 525 feet of organically rich and 160 feet of net shale.
Total organic content (TOC) in the prospective area ranges from 1% to 6% with an average of
3.5%. Thermal maturity in the Liassic Shale increases with depth, ranging from 1.2% Ro in the
more shallow western areas to over 1.7% Ro in the deep eastern area. Average vitrinite

reflectance (Ro) over the prospective area is 1.45%.

Figure VII-6. Southeast Basin Prospective Area and Upper Jurassic Shale Isopach
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Figure VII-8. Generalized Southeast

Figure VII-7. Southeast Basin Stratigraphic Column

Basin Cross Section
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Resources

Our analysis suggests the Upper Jurassic “Terres Niores” Shale of the Southeast Basin
contains a relatively low resource concentration of 27 Bcf/mi?, Table VII-1. Low average TOC
content and relatively thin net shale thickness are the main determinants of this low resource
concentration. Isolated areas throughout the basin with higher shale thickness or more organic
richness would contain higher gas in-place. The risked gas in-place for the “Terres Niores”

Shale is 112 Tcf, of which we estimate 28 Tcf will be technically recoverable.

The Upper Liassic Shale contains a slightly higher, though still moderate, resource
concentration than the “Terres Niores” shales, averaging 57 Bcf/mi?, Table VII-1. Risked shale

gas in-place over the prospective area is 305 Tcf, of which 76 Tcf is technically recoverable.

Activity

A number of firms are beginning to explore the shale gas potential of the Southeast
Basin; the initial permit award deadline was delayed due to the large numbers of applications.
In March of this year, the French Ministry of Energy and the Environment awarded several
exploration permits, worth over $115 million and covering over 4,000 mi® (~22% of the
prospective area), to companies interested in investing in the drilling and exploration of shale
formations in Southeast France. Where information was available, the leases are shown on
Figure VII-9.

e The Navacelle permit (~ $5 Million dollars; 84 mi?) was awarded to Egdon
resources (later acquired by eCORP), Eagle Energy and YCI Energy to allow for

seismic surveys and an exploration well over the next 5 years.

e The Plaine d’Ales permit (~$2 million dollars; 194 mi?) was awarded to Bridgeoil
Ltd and Diamoco Energy to perform seismic reprocessing and drill a new

exploration well or reenter a 1949 well with heavy crude shows.

e The Montelimar permit (~$51 million dollars; 1,670 mi®) was awarded to Total
E&P and Devon energy (Devon’s stake was subsequently bought by Total) to
perform geological and geochemical studies and, if warranted, exploratory drilling

over 5 years.
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e The Villeneuve-de-Berg permit (~$54 million dollars; 360 mi’) was awarded to
Schuepbach Energy LLC, Dallas, Dale Gas Partners LP of Texas, and Franco-
Belgian GDF Suez. The companies agreed to perform 19 miles of new seismic
surveys and drill two wells, one of which would hydraulically fracture the target

shale formation, over the next 3 years.

e The Nant permit (~$2.3 million dollars; 1,701 mi’) was awarded to these same
companies, on which they will also perform 19 miles of seismic surveys and drill

a shallow exploration well over the next 3 years.

e The Bassin d’Ales permit (~$1.4 million dollars) was awarded to Mouvoil SA to

perform seismic studies and drill an exploration well.

Figure VII-9. Southeast Basin Leasing Map (Selected)
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NORTH SEA-GERMAN BASIN
Geologic Characterization

For this report, we have defined the North Sea-German Basin as the large, 78,100 mi?
area of Paleozoic through Tertiary fill, extending from Belgium to Germany’s eastern border,
from the North Sea to the Tornquist suture zone, Figure VII-10. A number of smaller, localized
basins, such as the German Lower Saxony, Musterland and the West Netherlands basins exist

as grabens within the more regional North Sea-German Basin.

Several formations in the North Sea-German Basin show potential for shale gas
development. The three best identified formations are the marine Lower Jurassic “Posidonia”
Shale, the deltaic Lower Cretaceous “Wealden” Shale and the marine Carboniferous Namurian
Shale in the northwest of Germany and parts of the Netherlands. Each of these formations
have been previously noted to be oil and gas source rocks, though their potential for shale gas
development had not been realized until the past few years. Conventional drilling in areas of
Germany and the Netherlands has provided logs and other geophysical data used to identify the
prospective areas of these three shales, but there is still uncertainty, especially in the

Netherlands, about the quality and producibility of these shale formations.

Additionally, the lacustrine Permian shales in northeast and southern Germany (not
evaluated in this study) appear to have some shale gas potential.®’ Based on available data,
we have identified a 2,650 mi® prospective area of Posidonia Shale in Germany and the
Netherlands, a 3,969 mi? prospective area of Namurian Shale in the Netherlands, and a 1,810
mi? prospective area of the Wealden Shale in Germany. At this time prospective areas for the

Namurian and Permian shales in Germany could not be established.

Reservoir Properties (Prospective Areas)

Lower Jurassic (Liassic) Posidonia Shale. The Lower Jurassic shale sequence
referred to in the report as the Posidonia Shale actually contains three shale bearing members:
The Posidonia Formation, the Aalburg Formation and the Sleen Formation. Though it is likely
present throughout much of the North Sea-German Basin, the Posidonia Shale is prospective in
isolated sections of Germany and the Netherlands, Figure VII-10. The Netherlands prospective
area is based on reports released by energy company TNO, which used depth, maturity,

thickness and other factors to identify highly prospective regions for shale gas development?®.
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Depth to the Posidonia Shale ranges from 3,300 feet to 16,400 feet, with an average
depth in the prospective area of 9,840 feet, Figure VII-11.° The prospective area is relatively
thin, with an organically rich thickness of 148 feet and a net shale thickness of 100 feet.
Organic content varies in the Posidonia Shale, ranging from 1% to 14% with an average of
5.7%. Thermal maturity is the major liming factor for shale gas potential in this formation; the
maijority of its area is outside of the gas generating window. The central, deeper areas of known
accumulations of Posidonia Shale exhibit sufficient maturity, Figure VII-12, with Ro ranging from
1.0% to 1.5%, placing the shale in the wet to dry gas window.'® Porosity data from the

Netherlands suggests that much of the available pore space in the shale is water saturated.

Cretaceous Wealden Shale. The Wealden Shale is a known source rock in the Lower
Saxony Graben of the North Sea-German Basin. Like the Posidonia Shale, it is immature with
respect for gas generation throughout most of its area, but is prospective in its deeper core
areas. The prospective area was defined by the erosional edge of the shale within the German

Lower Saxony Graben at depths below 3,300 feet.

In this area, the Wealden Shale ranges from 3,300 feet to 9,840 feet, averaging 6,560
feet deep. Approximately 112 feet of the shale is organically rich, with 75 feet of net shale
thickness''. TOC in the Wealden Shale is highly variable, ranging from 1% to 15%, averaging
4.5% in the prospective area. Thermal maturity is somewhat low for a shale gas target, ranging
from 1% to 1.5% Ro, with an average Ro of 1.25%.

Carboniferious Namurian Shale. The Namurian sequence in the Netherlands contains
two prospective formations, the Epen and Geverik, which are collectively termed the Namurian
Shales in this report. Data provided in the TNO report discussed above were used to establish

areas with prospective depth, maturity and thickness for shale gas potential.

Depth to the top of the Namurian Shales ranges from 8,400 feet to 16,400 feet,
averaging 12,300 feet over the prospective area. Because the shale formation is so deep, it is
very thermally mature, with an average Ro of 2.5%.8 Within the Namurian Shale package, the
Epen Formation is very thick, reaching almost 7,000 feet in some areas. Organic rich shale
thickness in the formation is approximately 407 feet, evenly split between the Geverik and Epen
Formations'?. Net shale thickness is assumed to be 122 feet, based on analogue net to gross
ratios observed in British Namurian Shales. Total organic content ranges from 1% to 15%,

averaging 3.5%.
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Figure VII-10. North Sea-German Basin Prospective Shale Formations
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Figure VII-11. North Sea-German Basin Stratigraphic Column9
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Figure VII-12. North Sea-German Basin Cross Section
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Resources

Based on the above data, we calculate that the prospective area of the Posidonia Shale
contains a low resource concentration of 33 Bcf/mi?, largely due to the shale’s relatively low gas
filled porosity, Table VII-1. Based on a prospective area of 2,650 mi?, the Posidonia Shale

contains 26 Tcf of risked gas in-place, with 7 Tcf of technically recoverable shale gas resource.

The 3,970 mi? prospective area of the Namurian Shale in the Netherlands contains a

resource concentration of 54 Bcf/mi®. Risked gas in-place is 64 Tcf, with 16 Tcf recoverable.

The less mature and shallower Wealden Shale in Germany also has a low average
resource concentration, calculated at 26 Bcf/mi?, Table VII-1. Based on a prospective area of

1,845 mi?, we estimate a risked gas in-place of 9 Tcf, with 2 Tcf technically recoverable.

Activity

Super major Exxon Mobil has been the lead company leasing prospective shale gas
acreage in Germany. The company has drilled five test wells on its exploration leases, at least
three of which are reported to be testing shale gas potential, Figure VII-18. In early November,
Exxon announced an additional 10 well exploration program that will be targeting shale gas

potential in northwest Germany.

In May 2010, Realm Energy announced the receipt of a small, 25 mi® shale gas
exploration permit in West Germany. The company plans to explore the oil and gas potential in
the Posidonia and Weald shales underneath its acreage. Realm’s concession is valid for three
years and does not require well drilling, but does provide the company with data from the 21

wells drilled on its acreage in past years.

BNK Petroleum has leased approximately 3,745 square miles of land for shale, CBM
and tight gas sand exploration in West and Central Germany. The company has yet to drill on
any of its properties, but reports targeting “three different shale formations,” most likely the
Posidonia, Wealden and Permian shales. Most of its concessions are not near areas with
recognized shale gas potential, suggesting the company is pursuing a wildcatting approach in

Germany, Figure VII-13. To date, the company has not provided details of drilling plans.
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In June 2009, 3Legs Resources secured a 980 mi? exploration permit for shale gas

exploration in Permian-Carboniferous horizons. The permit is valid for 3 years and requires 2D

and 3D seismic testing and the drilling of one exploration well. The company has not provided

addition information at this time.

In the Netherlands, two companies have acquired exploration permits that are likely

targeted toward shale gas exploration, Figure VII-13: Cuadrilla Resources, and DSM Energie

(later sold to TAQA, the Abu Dhabi national energy company).

Neither company has made

public statements about their plans in the Netherlands. Queensland Gas Company (now BG

Group) has a sizable exploration acreage position in east Netherlands, at the border with

Germany in an area which may hold shale gas and CBM potential.

Figure VII-13. North Sea-German Basin Leasing Activity
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SCANDINAVIA

Geologic Characterization

Scandinavia’s shale gas potential exists predominantly in the Cambrian-Ordovician Alum
Shale. This highly organic rich shale was deposited over much of Scandinavia by the Lapetus
Ocean and has been identified from Norway to Estonia, and south to Germany and Poland.
The shale was deposited during an unusually long anoxic period, resulting in its high organic
content and unusually high concentrations of uranium. The Alum shale outcrops in central and

southern Sweden, where it has been mined as a source of oil shale for many decades.

Outside of outcroppings, geologic data on the Alum Shale is scarce. Though the shale
is somewhat thin and outside of the gas window in most of the area, its high organic content and
moderate depth make it a very promising target where prospective. ARI has identified a 38,221
mi? prospective area where maturity data indicate the shale is inside the gas window, Figure VII-
14. Thermal activity along the Caledonian deformation front provided sufficient heat to mature
the shale into the gas window. Elsewhere the Alum Shale appears to be mostly oil-prone. In
northern Norway, the prospective area is further constrained by shale thickness and the
Caledonian deformation front, which likely represents an erosional edge to the Alum shale.
Note that, because of the Alum shale’s wide areal coverage, only the prospective area is shown
in Figure VII-14.
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Figure VII-14. Alum Shale Geographic Extent
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Reservoir Properties (Prospective Area)

Regional data on the Alum Shale is sparse. Where data was not available for the
prospective area of the Alum shale in the Northern of Sweden, we used data from the Skane

area at the southern tip of the country as an analogue.

The area of the Alum Shale inside the gas window is shown in Figure VII-14. Thermal
maturity in the gas window ranges from 1.0% to 2.7% Ro% with an average Ro of 1.9%".
Average thickness inside the prospective area is 330 feet with a net shale thickness of 160
feet'. Depth to the Alum Shale Formation is assumed to be 3,300 feet, based on the
exploration well Shell reported drilling into its acreage in Southern Sweden, which reached a
target depth of 1,000 meters (3,300 feet).
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A generalized stratigraphic column for the Alum Shale is provided in Figure VII-15. Total
organic content of the shale can reach up to 28% in localized areas, but averages 10% within

the prospective area.

Resources

We calculate a moderate resource concentration of 77 Bcf/mi? for the Alum Shale.
Though it has very favorable maturity and organic content, it is not as thick as the Baltic or
Lublin shales of Poland, resulting in a lower resource concentration. Due to the relative lack of
data on reservoir characteristics in large portions of the Alum shale prospective area, we
employ high risk factors to calculate the risked recoverable resource. Within the Alum Shale’s
38,221 mi? prospective area, we calculate a risked gas in-place volume of 589 Tcf, of which 147

Tcf is estimated to be technically recoverable.

Figure VII-15. Central Sweden Stratigraphic Column'®
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Activity

Shell Oil is the most active firm currently investigating the resource potential of the Alum
Shale. Beginning in 2008, the firm has been accumulating an acreage position in the Skane
region of Southern Sweden, which now amounts to approximately 400 mi?, Figure VII-16.
Shell’s leases provide three years for the firm to drill 3 exploration wells and evaluate the area’s
shale gas potential. Local opposition to well drilling delayed the start of the drilling until earlier
this year, though the firm has now drilled two of the three wells. Representatives from Shell
reported the firm will analyze the results of the well tests for one year before determining

whether to proceed with the project.

Figure VII-16. Shell’s Alu

m Shale Acreage in Southern Sweden
5 g ot ] o itk ¥

RO T

A coalition between the GFZ German Research Centre for Geosciences together and
the Geological Survey of Denmark and Greenland (GEUS) will also be exploring the Alum
Shale. In August 2010, the agencies announced they will be drilling a shallow (130 feet) well
into the Alum Shale on the Danish island of Bornholm. This effort is being undertaken by
GASH, the Gas Shales in Europe research organization.

Finally, in September 2010, Gripen Gas reported securing 5 exploration permits to
investigate shale gas potential in the central Swedish county of Ostergétland. The permits were
awarded for a period of three years.
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UK NORTHERN PETROLEUM SYSTEM

Geologic Characterization

The U.K. contains two major petroleum systems: a Carboniferous Northern Petroleum
System that ranges from the Varascan Front in central England north through Scotland; and a
Mesozoic Southern Petroleum System that exists between the Varascan Front and the English
Channel in England and Wales. While, each of these petroleum systems contains several
petroleum basins, they share similar depositional and tectonic history and contain the same
shale gas prospective formations. For simplicity, this report will discuss shale gas potential in

the U.K. at the level of the petroleum systems rather than by basin.

The Northern Petroleum System is a complex and highly faulted mosaic of mostly
Carboniferous basins and uplifted highs. It contains the major Carboniferous Pennine Basin, as
well as the Cheshire, West Lancashire, Cleveland and Scottish Midland Valley basins, Figure
VII-17.  Petroleum exploration has been ongoing in this area for over 100 years, leading to

several large oil fields, containing over 2 billion barrels of oil in-place.'®

The main source rock in the Northern Petroleum System is the marine Namurian
Bowland Shale (also known as the Holywell Shale in the Cheshire and West Lancashire
basins), Figure VII-18. This shale matured during the Carboniferous and was uplifted by the
Variscan Orogeny, though its depth varies by basin due to major faulting events. Using data on
Bowland Shale maturity and net organic rich thickness from well logs, ARI calculates a 9,820
mi? prospective area in the Northern U.K Petroleum System. However, current development
has only targeted the shale’s eastern areas. Additional exploration and data will be needed

before the western extent of the shale can be established.
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Figure VII-17. UK Northern Petroleum Province, Basins, and Shale Gas Prospective Areas
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The Boland Shale ranges from 3,280 to 6,300 feet deep, with an average depth of 4,800
feet in the prospective area, Figure VII-19." Though its gross interval can reach up to 4,000
feet, approximately 500 gross feet are organically-rich, of which 200 feet is net shale.’® The
Boland Shale is organically rich, with total organic content ranging from 1% to 10%, averaging
5.8%." Though most areas of the shale are in the oil window, the shale gas prospective area

has a thermal maturity of 1% to 1.8% Ro, within the wet to dry gas window.
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Figure VII-18. Northern Petroleum System
Stratigraphic Column16
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Figure VII-19. Cleveland Basin Cross-Section, U.K. Northern Petroleum System'®
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Resources

Based on the above data, ARI calculates that the Bowland Shale has a moderate
resource concentration of 48 Bcf/mi? in the prospective area. However, data from the eastern
margins of the shale formation were used as proxies for the currently unexplored western areas,
which adds uncertainty to the assessment. Based on the shale’s 9,820 mi® area, it contains a

risked shale gas in-place of 95 Tcf, of which 19 Tcf is technically recoverable.

Activity

In December of 2010, Cuadrilla Resources finished drilling its first exploratory well into
the Cheshire Basin’s Bowland Shale. Initial results from the Preese Hall #1 well, as provided by
Cuadrilla, indicate that the shale has high prospectivity for shale gas development. Cuadrilla

plans to drill two additional wells into the formation in early 2011, Figure VII-20.

Though it has yet to drill any exploration wells, U.K. based Island Gas has a number of
acreage positions in the U.K. Northern Petroleum System that it reports as having promising
shale gas potential. The company is in the process of evaluating the shale gas resource
potential of its acreage, which covers over 460 mi® in the West Lancashire, Cheshire and

Cleveland basins.

Celtique Energy also has acreages positions in the Northern Petroleum System that
could contain shale gas resources. The company reports acreage positions in the East
Midlands and Cheshire basins, on which it plans to target Carboniferous and Triassic sands
sourced by Namurian Shales. Though the company has not expressly stated that it intends to
target shale formations on its North Petroleum System acreage, it is targeting the Weald Shale

in southern England.
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Figure VII-20. Operators Exploring Shale Gas in the U.K. Northern Petroleum System
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U.K. SOUTHERN PETROLEUM SYSTEM

Geologic Characterization

The U.K. Southern Petroleum System contains the Mesozoic Weald and Wessex basins
and ranges from the Variscan Front south to the English Channel, Figure VII-21. Petroleum
basins in the U.S. Southern Petroleum System are characterized by Jurassic-age source rocks
and Jurassic and Triassic clastic reservoirs. These formations are regionally equivalent with the
shale formations in the Paris Basin across the English Channel, separated by the Hampshire-
Dieppe High, a regional arch. Both basins began as Permo-Triassic depositional centers, which

were later uplifted during Tertiary time along major structural faults.

Petroleum exploration has been ongoing in the Southern Petroleum System since the
early 1920’s, though few notable finds were discovered until 1973, when the Wytch Farm

Oilfield, U.K.’s largest oil field, was discovered™®.

The most prospective source rock for shale gas development in the Southern Petroleum
System is a group of Liassic interbedded shallow marine shales and clays, known as the Liassic
Clays, Figure VII-22. Widely believed to be immature for gas development, selected portions of
the Liassic Clays have recently been shown to be in the gas generation window. Throughout
much of the Weald and Wessex basins, however, the formation is within the oil window. Using
data provided by operators in the region, ARI has identified a 160 mi® area in which the Liassic
Shales are within the gas window. A number of Upper Jurassic clays are also source rocks in
the Southern Petroleum System, such as the Kimmeredge Clay, but are immature with respect

to gas production.
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Figure VII-21. U.K. Southern Petroleum System and Shale Gas Prospective Area
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Depth to the top of the prospective area of the Liassic Shales ranges from 11,500 feet to
15,500 feet, with an average of 13,500 feet,? Figure VII-23. While the shale exists throughout
the Weald and Wessex basins, it is only prospective in their deepest areas. At this depth,
approximately 125 feet of the up to 2,000 feet of formation interval contains net, organic rich
shale.?’ Total organic content varies from 1% to 7%, with an average of 2.4% in the deep,
prospective areas.® While in the wet gas window, the Liassic Shale is still somewhat immature,

with vitrinite reflectance ranging from 1% to 1.3% Ro.?
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Figure VII-22. Southern Petroleum System Stratigraphic
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Figure VII-23. Weald Basin Cross-Section, U.K. Southern Petroleum System?®:
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Resources

We calculate that the Liassic Shale has a low to moderate resource concentration of 45
Bcf/mi? in its prospective area. Because the shale is only in the gas window in the deepest
areas of the basin, its prospective area is small, approximately 160 mi®>. Our analysis suggests

that this area contains 2 Tcf of risked GIP, of which about 1 Tcf is recoverable.

Activity

Celtique Energy (in 50/50 partnership with Magellan Petroleum) has acreage positions in
the Southern Petroleum System. According to company data, its 386 mi® exploration licenses in
the Weald Basin could contain up to 2 Tcf of recoverable resource, which is supported by the
fact that that the company’s acreage covers almost the entirety of the prospective area of the
Liassic Shale, Figure VII-24. The company has not provided a timeline for its drilling plans, but

its license is valid until 2014.

The U.K. based energy company Eden Energy is in a similar position to Celtique, with
acreage it believes to be prospective for shale gas development that is currently untested. The
company has license to 700 mi?, on which it reports 40 Tcf of shale gas potential. The company

is actively looking for a Joint Venture partner, but has not provided additional information.

Eurenergy, with acreage positions in Poland and France, has a small concession in the
Weald Basin, totaling 192 mi’>. Cuadrilla also has small acreage positions in the Southern

Petroleum System, though it has not made its plans in the region public.
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Figure VII-24. Operators Exploring Shale Gas in the U.K. Southern Petroleum System
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VIENNA BASIN
Geologic Characterization

The Vienna Basin is a Tertiary pull-apart basin located in northwest Austria and
extending northward into the Czech Republic, Figure VII-25. The basin contains a thick, 33,000
feet sequence of Neogene through Mesozoic fill and rests atop the Calcareous Alps and
Bohemian Massif basement, Figure VII-26. Faults traversing the basin provide pathways for
hydrocarbons produced in Jurassic strata to migrate into a series of overlying stacked
reservoirs. These reservoirs have provided over 1 billion barrels of oil to date, making the

Vienna Basin one of Europe’s most important hydrocarbon sources.?

Figure VII-25. Vienna Basin Regional Setting

®E e
=
it 2
2T
A Trrava
» I Slovakia .
1 f
IAustria 3 Vien
[ »
‘l‘-v.,_h .
e
"i
J .
2 Legend L e f/ e
L | =
3 [ vienna Basin "'.? e Advanced Resourcas
m— Cross Sections e k) -
[TTT] oMV Cance ssion Areas I‘ e _k_x’; 048 16 24 32
Petroleum s s mmm Kilometers
Bl Gas Field ~ e S
B Ol Field J Y 0 4 8 16 24 32 =
[ ~ i
. ;ﬁ:r:m\ PILE Miles
16°E 17°E

January 21, 2011 VII-32 @




World Shale Gas Resources: An Initial Assessment

Figure VII-26. Geologic Setting of the Vienna Basin
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Shale gas potential in the Vienna Basin occurs in the thick (up to 2km) succession of
lime-rich mudstone known as the Upper Jurassic Mikulov Marl Formation. While not technically
a shale, the Mikulov Marl Formation has an organic content of up to 10% in some areas, and is
thought to be the main source of hydrocarbons in the basin. However, due to its clay-rich
lithology, heavily faulted environment, and relative immaturity at prospective depths, the Mikulov

Marl is a high risk shale gas target.®

Reservoir Properties (Prospective Area)

Due to the Mikulov Marl Formation’s depth in the gas-prone areas, it is not prospective
for shale gas development at this time. The formation ranges from 5,580 feet to 39,360 feet
throughout the Vienna Basin, Figure VII-27.** However, at depths above 16,400 feet, it is

immature for thermogenic gas development.?>2®
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Figure VII-27. Selected Vienna Basin Cross Sections

Activity

Austrian based OMB Exploration and Production GmbH is exploring the potential of the
Mikulov Marl formation as part of a three year study. It has secured exploration concessions in

Northern Austria, which include 820 mi? within the Vienna Basin, Figure VII-25.

Though the company has publically estimated that the Vienna Basin contains 200 to 300
Tcf of resource, it cautions that the great depth and pressure of shale gas formations may make
exploration technically or economically infeasible’”. In a recent interview, Wolfgang
Ruttenstorfer, OMV'’s chief executive, noted that well costs at depths greater than 16,400 feet

could be $20 million or more.
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FRANCE

Approximately 98% of France’s gas consumption (4.7 Bcfd) is provided by imports, of

which 24% originate from Russia.?®%

In 2009, the country produced 0.08 Bcfd of gas, from
negligible proved reserves. The shale gas in-place (risked) in France’s Paris and South-East

basins equals 720 Tcf of which 180 Tcf is estimated to be technically recoverable.

GERMANY

Germany is also very dependent on natural gas imports to satisfy the country’s demand
for the fuel. In 2009, Germany consumed 9 Bcfd of natural gas, but only produced 1.4 Bcfd,
from proved reserves of 6 Tcf. Of the balance that the country imported, approximately 43%
came from Russia. The Posidonia, Namurian and Wealden shales discussed in this report
contain 34 Tcf of risked shale gas in-place, with 8 Tcf of technically recoverable resource.

Additional, still undefined shale potential likely exists in the Permian-Carboniferous shales.

NETHERLANDS

Due to its significant offshore North Sea resource base, the Netherlands is self-sufficient
in natural gas. In 2009, the country produced 7.6 Bcfd of natural gas, of which 4.7 Bcfd were
consumed domestically. Despite the country’s abundance of conventional gas, there is interest
in exploring for shale gas. The Netherlands’ portion of the Posidiana, Namurian and Wealden

shales contain 66 Tcf of risked shale gas in-place, with 17 Tcf technically recoverable.

SWEDEN

Sweden does not produce natural gas. The 164 Tcf of risked shale gas in-place and the
41 Tcf of technically recoverable shale gas resources could meet domestic consumption, at 0.1
Bcfd in 2009, far into the future.

DENMARK

Denmark is currently self-sufficient in natural gas, consuming 0.4 Bcfd of the 0.8 Bcfd it
produced in 2009. However, the country is likely to become a net importer, as its natural gas
reserves have been steadily falling (from 4 Tcf in 2005 to 2 Tcf in 2009) in the face of increasing
production. The prospective area of Denmark contains an estimated 92 Tcf of risked shale gas
in-place and 23 Tcf of technically recoverable resource, which could sustain the country’s

current level of consumption far into the future.
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NORWAY

Like the United Kingdom, Norway has a large endowment of natural gas resources from
its North Sea fields. In 2009, the country produced 9.9 Bcfd of natural gas from 82 Tcf of
reserves (almost half of Europe’s natural gas reserves), while only consuming 0.44 Bcfd. The
Alum Shale could provide an additional 83 Tcf of recoverable resource, almost doubling the

country’s existing natural gas resource base.

UNITED KINGDOM

Though the United Kingdom’s North Sea and onshore fields provide substantial amounts
of natural gas (5.7 Bcfd in 2009), it is currently a net importer, with natural gas consumption of
8.5 Bcfd in 2009. Like Denmark, the United Kingdom’s natural gas reserves have been in
decline decreasing from 27 Tcf in 2000 to 12 Tcf in 2009. The gas in-place (risked) in the
Bowland and Liassic shales are estimated at 97 Tcf, with 20 Tcf of technically recoverable

resource.
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VIII. CENTRAL NORTH AFRICA

INTRODUCTION

The Central North Africa region (Algeria, Tunisia and Libya) contains two major shale
gas basins™: (1) the Ghadames Basin, in eastern Algeria, southern Tunisia and northwestern
Libya; and (2) the Sirt Basin, in north-central Libya. Figure VIII-1 provides the outline map for
these two basins as well as the region’s natural gas pipeline system”. Central North Africa holds
significant volumes of shale gas resources, with 1,861 Tcf of risked gas in-place in the
prospective areas of these two basins. Of this gas in-place, we estimate a risked recoverable
resource of 504 Tcf, Table VIII-1.

Figure VIII-1. Shale Gas Basins and Pipeline System of Central North Africa
i e

Legend
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* Additional bas ins in the region i nclude: the Mu rzug, P elagian, K uffra, B enghazi, D erna and of fshore T ripolitania B asins. T hese are not
considered here due to their relative lack of development and limited shale gas potential.
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Table VIII-1. Reservoir Properties and Resources of Central North Africa

° o Basin/Gross Area Ghadames Basin (121,000 mi?) Sirt Basin (177,000 mi?)
§ g Shale Formation Tannezuft Frasnian Sirt-Rachmat Etel
Geologic Age Silurian Middle Devonian [[Upper Cretaceous| Upper Cretaceous
2 Prospective Area (mi’) 39,700 12,900 70,800 70,800
g Interval 1,000 - 1,800 200 - 500 1,000 - 3,000 200 - 1,000
& |Thickness (ft) |Organically Rich 115 197 2,000 600
§ Net 104 177 200 120
z Interval 9,000- 16,500 | 8,200 - 10,500 9,000 - 11,000 11,000 - 13,000
a  |Depth (ft)
Average 12,900 9,350 10,000 12,000

£ & |Reservoir Pressure Overpressured | Overpressured Normal Normal

2 £ |Average TOC (wt. %) 5.7% 4.2% 2.8% 3.6%

@ S [Thermal Maturity (%Ro) 1.15% 1.15% 1.10% 1.10%

= o Clay Content Medium Medium Medium/High Medium/High
g GIP Concentration (Bcfimi?) 4 65 61 42
2 |Risked GIP (Tcf) 520 251 647 443
& |Risked Recoverable (Tcf) 156 75 162 111

GHADAMES BASIN

Geologic Characterization

The Ghadames (Berkine) Basin is a large, 121,000 mi? intracratonic, extensional basin
underlying eastern Algeria, southern Tunisia and western Libya. In its western area, the basin
contains reverse faulted structures, providing conventional oil and gas structural traps for
petroleum sourced from Devonian- and Silurian-age shales. The central, deep portion of the

basin contains uplifted fault blocks formed during the Cambrian-Ordovician®.

The Ghadames Basin contains two major organic-rich shale formations: (1) The lower
Silurian massive shales of the Tannezuft Formation; and (2) The Middle Devonian Frasnian “Hot
Shale,” Figure VIII-2. The formations were mapped and screened to establish the prospective

areas with favorable reservoir characteristics for shale gas resources.
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Reservoir Properties (Prospective Area)

Silurian Tannezuft Formation. The depth of the prospective area of the Silurian
Tannezuft Formation ranges from 9,000 along the northern and eastern edge to below 15,000
feet in the basin center, Figure VIII-3. The gross interval of the organically-rich portion of the
Tannezuft formation reaches 1,800 feet, with an organically rich average net thickness of 104
net feet. The TOC of the Tannezuft Formation averages 5.7%. The lower portion of the
formation is particularly organically-rich, with TOC values of up to 17%. The thermal maturity of
the Tannezuft shale ranges from mature oil (Ro of 0.7% to 1.0%) in the northern portion of the
basin, to gas/condensate (Ro of 1.0% to 1.2%) and to dry gas (Ro of 1.2% or greater) in the

central and southern portion of the basin, Figure VIII-4.

Middle Devonian Frasnian “Hot Shale”. The depth of the prospective area of the
overlying Middle Devonian Frasnian “Hot Shale” ranges from 8,000 feet to 10,500 feet. The
Frasnian “Hot Shale” interval ranges from 200 feet in the west to nearly 500 feet in the north-
central area of the basin, with an organically-rich net thickness of 177 feet. The Frasnian “Hot
Shale” has TOC values that range from 1% to 12% with an average of 4.2%.2 The average
thermal maturity in the prospective area is 1.15% Ro, placing the shale in the gas and

condensate window.

Resources

The Ghadames is an important conventional hydrocarbon basin. Recent conventional oil
field discoveries in the basin have helped boost oil and natural gas production in Algeria and
Tunisia. In its 2000 World Petroleum Assessment, the USGS estimated 4.5 billion barrels of
undiscovered oil and 12 Tcf of undiscovered natural gas for the Ghadames Basin (Tanezuft-

Ghadames Total Petroleum System?®).

The Silurian Tannezuft shale has a low to moderate resource concentration of 44
Bcf/mi?. Given a 39,700 mi? prospective area, the risked shale gas in-place is 520 Tcf. Based
on favorable reservoir properties and mineralogy we estimate a risked technically recoverable
resource of 156 Tcf, Table VIII-1. The Middle Devonian Frasnian “Hot Shale” has a moderate
resource concentration of 65 Bcf/mi?. Given a 12,900 mi? prospective area, the risked shale gas

in-place is 251 Tcf, with a risked technically recoverable resource of 75 Tcf, Table VIII-1.
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Figure VIII-2. Ghadames Basin Stratigraphic Column*
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Figure VIII-3. Ghadames Basin Structure Depth Map and Cross
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Figure VIlI-4. Silurian Tannezuft Vitrinite Reflectance4
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Activity

Considerable exploration activity is underway in the Ghadames Basin. For example,
Cygam Energy has acquired four permits in the Tunisia portion of the Ghadames Basin totaling
3.1 million gross acres®. Cygam’s exploration program for 2010/2011 involves 2D/3D seismic, 3
exploration wells and 2 appraisal wells. Cygam Energy conducted a frac job in March 2010 on
Well No. 1 in the Tannezuft shale at a depth of 13,000 ft in the Sud Tozeur permit area. No

information has been provided on test results.

Chinook Energy Inc. has acquired 7 lease blocks in the Tunisia portion of the Ghadames
Basin, totaling 3 million gross acres. The Sud Remada block totals 1.2 million acres with 5-6
structures identified, including the Tannezuft shale®. This year, the company plans to drill two
appraisal wells in the Sud Remada lease block. Previous drilling into the deeper, oil bearing

“TT” Ordovician reservoir, showed hydrocarbon potential in the Silurian Tannezuft formation.

To date, no shale gas production has been reported from the Ghadames Basin.
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SIRT BASIN

Geologic Characterization

The Sirt (Sirte) Basin is a relatively young, rifted, intracratonic basin underlying an area
of 177,000 square miles of Central-West Libya. Active subsidence and block faulting in the
Upper Cretaceous through Eocene has created several large troughs in the Sirt Basin,

containing large volumes of organically-rich shale, Figure VIII-6.

The Sirt Basin contains two prospective shale gas formations: (1) the Upper Cretaceous
(Maestrictian-Coniacian) Sirt/Rachmat Shale, and (2) Upper Cretaceous (Turonian) Etel Shale,
Figure VIII-7.

Reservoir Properties

Upper Cretaceous Sirt Formation. The Sirt Shale Formation covers a prospective area
of 15,000 mi?, with depth ranging from 9,000 to 11,000 feet. The interval thickness ranges from
1,000 to 3,000 feet, with an average organically rich thickness of 200 ft, Figure VIII-87.The TOC
of the Sirt Shale ranges from 0.5% to 8%, averaging 2.8%.7 Measured thermal maturities in the
shallower portion of the Upper Cretaceous strata indicate that the Sirt Shale is in the oll
generation window (Ro of 0.7% to 1.0%). In the deeper, condensate/gas prospective area of

the basin, the thermal maturity is higher, with an Ro of 1.1%.8

Upper Cretaceous Etel Formation. The Etel Shale covers a prospective area of
15,000 mi” at a depth of 11,000 to 13,000 feet. Gross shale thickness ranges from 200 to 1,000
feet, with an average organically rich net thickness of 120 feet. The average TOC of the Etel
Shale is 3.6%. In the prospective area, the shale is in the condensate/gas generation window

with a thermal maturity of 1.1 % Ro7.
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Figure VIII-6. Structure and Cross Section of Northern Sirt Basin?®
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Figure VIII-7. Sirt Basin Stratigraphic Column7
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Resources

Because the prospective shale gas formations in Libya’s Sirt Basin lie in the deep
subsided troughs, they are extremely lightly explored. Most of the identified conventional oil and

gas fields are on the uplifted carbonate blocks, Figure VIII-6.

The Sirt Shale has a moderate resource concentration of 61 Bcf/mi?. Given a 70,800 mi?
prospective area, the risked shale gas in-place is 647 Tcf. Based on reservoir properties and
mineralogy, we estimate a risked technically recoverable resource of 162 Tcf, Table VIII-1. The
Etel Shale has a low-moderate resource concentration of 42 Bcf/mi?. Given a 70,800 mi?
prospective area, the risked shale gas in-place is 443 Tcf, with a risked technically recoverable
resource of 111 Tcf, Table VIII-1.

Activity

There is no publically reported shale gas production or shale gas exploration activity

underway in the Sirt Basin.

ALGERIA

Algeria is the sixth largest gas producer in the world, with marketed production of 8.2 Bcf
per day and reserves of 159 Tcf, as of 2009. Gas production has been increasing over the
recent decade, though at a slower rate than proved reserves. The country’s natural gas
infrastructure is well developed and includes one existing plus one planned LNG liquefaction

plant and a regional natural gas pipeline system™.

We estimate that northern Algeria has 653 Tcf of risked shale gas in-place with 428 Tcf
in the Silurian Tannezuft Shale and 225 Tcf in the Middle Devonian Frasnian “Hot Shale” of the
Ghadamas Basin. We estimate a risked technically recoverable resource of 196 Tcf.
Additionally, the Tindouf Basin of southwestern Algeria, discussed in Chapter IX, contains 159
Tcf of risked gas in-place in the Tindouf basin, of which 35 Tcf are technically recoverable. Once
developed, this would represent a very large increase over the current proved natural gas
reserves of Algeria. At the recent World Energy Congress (September 2010), the Oil Minister of
Algeria announced interest in assessing the natural gas resources of its shales and tight gas

sands.
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LIBYA

Libya is also a major hydrocarbon supplier, with 1.5 Bcfd of natural gas production from
reserves of 50 Tcf and 1.7 million barrels per day of oil production from reserves of 41 billion
barrels, in 2008™. Libya’s natural gas production has more than doubled since 2004, when the
“Greenstream” pipeline came online, linking Libya’s previously unconnected productive capacity

to European markets.

We estimate that Libya has 1,147 Tcf of risked shale gas in-place, with 49 Tcf in the
Silurian Tannezuft Shale and 8 Tcf in the Middle Devonian Frasnian Shale of the Ghadames
Basin. An estimated 647 Tcf is in the Sirt Shale and 443 Tcf is in the Etel Shale of the Sirt
Basin. We estimate a risked technically recoverable resource of 290 Tcf, representing a major
increase over current proved natural gas reserves. No public announcements of shale gas

activity are reported for Libya.

TUNISTA

Though it shares many of the same geologic features with Algeria and Libya, Tunisia
has a much smaller land mass than either of its neighbors, and thus much lower oil and gas
production. In 2008, with gas consumption of 0.4 Bcfd and gas production of 0.3 Bcfd (from
reserves of 2 Tcf), the country was a net natural gas importer. However, because of its
favorable oil and gas investment incentives, Tunisia has attracted many international E&P
countries, and it is the only country in North Central Africa where unconventional natural gas
potential is being actively explored. Tunisia had the first shale gas well and frac in North Africa

in March, 2010 and is actively supporting the pursuit of this resource.

We estimate that Tunisia has 61 Tcf of risked shale gas in-place, with 43 Tcf in the
Silurian Tannezuft shale and 18 Tcf in the Frasnian “Hot Shales” of the Ghadames Basin. We
estimate a risked technically recoverable resource of 18 Tcf, representing a major increase over

current proved natural gas reserves.
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IX. WESTERN NORTH AFRICA

INTRODUCTION

Morocco has large accumulations of Late-Cretaceous immature oil shale (kerogen), at

depths suitable for surface mining’. San Leon and Petrobras are beginning operations in this

area and estimate their potential at over 50 billion barrels. However, Morocco also possesses

organically rich Silurian- and Devonian-age shale gas potential in the Tindouf and Tadla basins,

Figure IX-1. Mapping and resource characterization of these shales is difficult because regional

deformation, erosion,

and subsidence of Morocco’s shale deposits resulted in their

discontinuous and complex present day distribution.

Figure IX-1. Shale Gas Basins of Morocco
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Accurately identifying promising shale basins and estimating their resource potential in
such a geologically complex area requires significant amounts of data, which are not widely
available in Morocco because of limited well drilling and data confidentiality. This report
assesses the two basins which appear to have the highest potential for shale gas resource
based on available data -- the Tindouf (Zag) Basin in the south, (extending into Algeria, Western
Sahara, and Mauritania), and the central Morrocan Tadla Basin. ARI estimates that these two
shale basins contain a risked shale gas in-place of 267 Tcf, of which 53 Tcf is technically
recoverable, Table IX-1. Additional shale gas potential may exist in the Doukkala, Essaouira

and Souss basins, but a lack of data prevents their assessment at this time.

Table IX-1. Reservoir Properties and Resources of Morocco

- . Tindouf Basin Tadla Basin
§ Basin/Gross Area (89,267 mi) (2,794 mi?)
(8]
§ Shale Formation Lower Silurian | Lower Silurian
Geologic Age Silurian Silurian
w2 Prospective Area (mi2) 55,340 1,670
*2 Interval 0-2,500 0-820
' |Thickness (ft) [Organically Rich N/A 328
S Net 50 197
>
< Interval 3,280 - 15,000 3,280 - 9,840
D h i) ) J J
=AY s 9,000 6,560
£ & [Reservoir Pressure Underpressured || Underpressured
2 £ |Average TOC (wt. %) 5.0% 2.0%
% & [Thermal Maturity (%Ro) 3.50% 2.25%
€ a Clay Content Medium Medium
g GIP Concentration (Bcfimi?) 18 49
o  |Risked GIP (Tcf) 251 16
@ |Risked Recoverable (Tcf) 50 3

The country’s primary shale target, the lower Silurian “Hot Shale,” was deposited during
the late Ordovician to early Silurian when glacial melting across the African super continent lead
to a large sea-level rise across much of what is now North Africa. During the early Silurian,
sediments from the glacial melt settled in regional lows and precipitated thin, but very
organically rich layers of marine organic matter during a regional anoxic event, Figure 1X-2. Data

from wells drilled across the country confirms the presence of organic rich Silurian shales,
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though these areas do not always correspond to currently recognized hydrocarbon basins. The
presence of thick Silurian sections, observed in many Moroccan hydrocarbon basins, does not
guarantee the presence of organically rich shale, as areas that were regional highs during the

early Silurian did not receive organically rich sediments?.

Figure IX-2. Simplified History of Morocco’s Depositional Environment, Ordovician-Devonian2
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TINDOUF BASIN

Geologic Characterization

The Tindouf Basin is the westernmost of the major North African Paleozoic basins,
covering 77,200 mi?_ It is bounded by the Anti-Atlas Mountains and Ougarta Arch to the north
and the Reguibate Massif in the south, Figure IX-3. Although once covered unconformably by a
blanket of Mesozoic to early Tertiary sediments, the Paleozoic now crops out over much of the
region, preserved in an asymmetric depression with a broad gentle southern flank and steeply

dipping more structurally complex northern margin, Figure 1X-4.

Figure IX-3. Tindouf Shale Prospective Area, SE Anatolian Basin, Morocco
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The basin was a large depocenter from late Ordovician to Carboniferous time and
accumulated layers of organic rich Silurian, Devonian (Frasnian) and Carboniferous (Visean)
shales, Figure 1X-4. However, due to the Hercynian orogeny, the prospectively of these shale
formations is uncertain. Heavy heat flow through the basin from igneous intrusion caused the
Tindouf Basin shales to reach high maturity through the Carboniferous. Uplifting and erosion of
these shales may have caused significant underpressuring, as the shales were not buried deep
enough to replenish hydrocarbons dissipated during the orogeny. This report will focus on the

Silurian “Hot Shale” because of greater data availability for this shale package.

We have identified a 53,340 mi? prospective area in the Tindouf Basin, based on depth
and thermal maturity data. The northern boundary of the prospective area is formed by the
1,000 meter depth contour line. The southern boundary is formed by the 1% Ro thermal
maturity contour line. While drilling density in the basin is extremely low, with an average of only
one well for every 5,000 mi?, the data suggest that organic rich, basal Silurian shales were
deposited throughout the basin2. It appears that additional well and seismic data has been
collected by various international companies in partnership with Moroccan oil company

ONHYM, but these data are not in the public domain.

Reservoir Properties (Prospective Area)

Silurian. Within the prospective area, depth to the base of the Silurian “Hot Shale”
ranges from 3,300 feet to 15,000 feet, Figure IX-5%. Present day TOC content ranges from
0.5% to 7%. It is likely that the TOC was much higher during the time of hydrocarbon
generation, due to the basin’s very high thermal maturity®. ARI assumes an average TOC
content of 5%. Thermal maturity decreases southward through the basin, ranging from 1% to
over 3% Ro. Organically rich net thickness is assumed to be 50 feet, based on data from a well

drilled in the southern flank of the basin®.

Resources

We estimate that the Silurian “Hot Shale” in the Tindouf Basin contains a low resource
concentration of 18 Bcf/mi?. While the shale formation is organically rich and inside the gas
window, it is very thin, thus limiting it's resource potential. Over the 55,340 mi? prospective area
of the basin, we estimate a risked shale gas in-place of 251 Tcf, with 50 Tcf technically

recoverable.
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Figure IX-4. Tindouf Basin Stratigraphic Figure IX-5. Tindouf Basin Cross Section3
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Activity

The Moroccan national oil and gas company ONHYM has been studying shale gas
potential in the country since mid-2010 and plans to collect seismic data in the beginning of
2011 and drill its first shale gas exploration well in the second half of 2011. The well will be
drilled in partnership with San Leon Energy (Ireland) and Longreach Oil and Gas (Canada), on

the Zag exploration license, Figure 1X-6".

Figure 1X-6. Tindouf Basin Exploration Acreage
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TADLA BASIN
Geologic Characterization

The Talda Basin is a 3,100 mi? intracratonic basin located in Central Morocco, within the
Moroccan Mesta. The basin fill contains approximately 16,500 feet of Paleozoic through
Cenozoic sedimentary strata, Figure IX-7. Paleozoic rocks dominate the basin, except in areas
where uplift caused their erosion. The basin is bounded by the Central Massif in the north, the
Atlas Mountains in the east, the Jebiliet Massif in the south and Rehamna Massif in the west.
The Fkih Ben Salah Fault divides the basin into a southeast section, characterized by complex
tectonics, heavy folding and faulting, and a northwest section, with thick carboniferous strata

and minor, infrequent faulting.8

As in the Tindouf Basin, regional uplifting during the Hercynian and Alpine eroginies
exposed the Silurian, Devonian and Ordovician shales after they had matured and begun to
generate hydrocarbons, Figure 1X-8. Though they were subsequently buried on the western
edge of the basin by approximately 6,500 feet of Cretaceous and Tertiary sediments, it is
unlikely the shales generated additional gas after reburial, Figure IX-98. As such, this basin is

at high risk for underpressuring, though data is not available to confirm this assumption.

The 1,670 mi? prospective area of the Tadla Basin is bounded by the 1,000 meter depth
contour line, various faults and the boundary with the Atlas Mountain range to the east. Little
data is available in the southern portion of the basin. The southern boundary of the prospective
area is assumed at the location of a well which did not encounter any organically-rich Silurian

strata.

Reservoir Properties (Prospective Area)

Silurian. The lower Silurian “Hot Shale” is at its deepest west of the Fkih Ben Salah
Fault, where they average 6,500 feet to 9,800 feet deep8. To the east, it becomes more
shallow, rarely reaching lower than 6,500 feet, Figure 1X-9. Average depth in the prospective
area is assumed to be 6,5608. Where it has not been eroded, the Silurian section can reach up
to 800 feet thick, with an approximately 300 feet of organically rich material, of which 200 feet
are net shale.’ Though TOC data from outcrops suggest organic content reaching as high as
10% to 12%'°, well data from inside the prospective area shows TOC values closer to 2%,

which have been used in this analysis. The Silurian “Hot Shale” is highly mature over the
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prospective area, with Ro values between 1.5% and 3%.8

Figure IX-7. Talda Basin Prospective Area, Morocco
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Resources

Based on the reservoir characteristics discussed above, we calculate a moderate 49
Bcf/mi? resource concentration for the Silurian “Hot Shale” of the Tadla Basin. Using the 1,670
mi? prospective area, we estimate the basin contains 16 Tcf of risked gas in-place, with 3 Tcf

technically recoverable.

Activity

As of yet, there is no reported shale gas exploration activity underway in the Tadla

Basin.
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Figure IX-8. Tadla Basin Stratigraphic Column8 Figure 1X-9. Tadla Basin Cross Sections
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MOROCCO

Morocco is heavily dependent on natural gas imports to meet its consumption needs. In
2009, the country consumed 0.05 Bcfd of natural gas, of which 0.049 Bcfd were imported™. The
country’s natural gas reserves are too small to be reported by the EIA. ARI estimates that
Morocco possesses 68 Tcf of risked shale gas in-place, of which 11 Tcf is technically

recoverable.

WESTERN ALGERIA

Algeria is the sixth largest gas producer in the world, with marketed production of 8.2 Bcf
per day and reserves of 159 Tcf, as of 2009. The country is also the eighth largest oil producer
in OPEC, producing 2.1 million barrels of oil per day from reserves of 12.2 billion barrels. Gas
production has been increasing over the recent decade, though at a slower rate than proved
reserves. ARI estimates that southwestern Algeria possesses 160 Tcf of risked shale gas in-
place, of which 35 Tcf is technically recoverable. The Ghadames basin in northern Algeria
contains an additional 653 Tcf of risked gas in-place, of which 196 Tcf is technically

recoverable.

WESTERN SAHARA

The EIA does not carry natural gas production or consumption data for Western Sahara.
ARI estimates that there is 37 Tcf of risked shale gas in-place in Western Sahara, of which 7 is

technically recoverable.

MAURITANIA

The EIA does not carry natural gas production or consumption data for Mauritania. ARI
estimates that there is 2 Tcf of risked shale gas in-place in Mauritania, of which 0.4 Tcf is

technically recoverable.
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X. SOUTH AFRICA

INTRODUCTION

South Africa has one major sedimentary basin that contains thick, organic-rich shales - -
the Karoo Basin in central and southern South Africa, Figure X-1. The Karoo Basin is large
(236,000 mi?), extending across nearly two-thirds of the country, with the southern portion of the
basin potentially favorable for shale gas. However, the basin contains significant areas of
volcanic (sill) intrusions that may impact the quality of the shale gas resources, limit the use of

seismic imaging, and increase the risks of shale gas exploration.

Figure X-1: Outline of Karoo Basin and Prospective Shale Gas Area of South Africa’2?
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The Permian-age Ecca Group, particularly the organically rich source rocks in the Lower
Ecca Formation, is the shale gas resources targeted by this resource assessment. Of particular
interest are the organically rich, thermally mature black shales of the Whitehill Formation. This
unit is regionally persistent in composition and thickness and can be traced across most of the

Karoo Basin. *

Based on limited preliminary data extracted from a variety of geological studies, ARI
believes that the Karoo Basin holds significant volumes of shale gas resources. We estimate
that the Lower Ecca Group shales in this basin contain 1,834 Tcf of risked gas in-place, with

risked recoverable shale gas resources of 485 Tcf, Table X-1.

Table X-1: Shale Gas Reservoir Properties and Resources of the Karoo Basin

% Basin/Gross Area Karoo Basini(236,400 mi?)
e
ﬁ Shale Formation Prince Albert Fm Whitehill Fm Collingham Fm
Geologic Age Lower Permian Lower Permian Lower Permian
w2 Prospective Area (miz) 70,800 70,800 70,800
.2 Interval 200 - 800 100 - 300 100 - 300
' |Thickness (ft) {Organically Rich 400 200 200
S Net 120 100 80
£z Interval 6,000 - 10,500 5,500 - 10,000 5,200 - 9,700
a  |Depth (ft)
Average 8,500 8,000 7,800
5 & |Reservoir Pressure Overpressured Overpressured Overpressured
2 £ |Average TOC (wt. %) 2.5% 6.0% 4.0%
ﬁ S [Thermal Maturity (%Ro) 3.00% 3.00% 3.00%
= a Clay Content Low Low Low
g GIP Concentration (Bcflmiz) 43 59 36
o  |Risked GIP (Tcf) 453 995 386
& |Risked Recoverable (Tcf) 91 298 96

A number of major and independent companies have signed Technical Cooperation
Permits (TCPs) to pursue shale gas in the Karoo Basin, including Royal Dutch Shell, Falcon Oil
and Gas, the Sasol/Chesapeake/Statoil joint venture, Sunset Energy Ltd. of Australia and Anglo
Coal of South Africa.
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The Ecca Group Shales of the Karoo Basin

The Karoo foreland basin is filled by over 5 kilometers of Carboniferous to Early Jurassic
sedimentary strata. The Early Permian-age Ecca Group shales underlie much of the 236,000-
mi? Karoo Basin, cropping out along the southern and western basin margins, Figure X-1. The
Ecca Group consists of a sequence of mudstone, siltstone, sandstone and minor

conglomerates.®

The larger Ecca Group, encompassing an interval up to 10,000 feet thick in the southern
portion of the basin, is further divided into the Upper Ecca (containing the less thick but
organically rich Fort Brown and Waterford Formations) and the Lower Ecca (containing the
Prince Albert, Whitehill and Collingham Formations), Figure X-2. The three Lower Ecca shale

units are the exploration targets of this resource assessment.

A regional southwest to northeast cross-section illustrates the tectonics of the Cape Fold
Belt that limits the Ecca Group on the south, establishing the oil-gas thermal maturity boundary
within the Ecca Group on the north, Figure X-3.

The prospective area for the Lower Ecca shales is estimated at 70,800 mi® (unrisked).
The boundaries of the prospective area are defined by the outcrop of the Upper Ecca Group on
the east, south and west/northwest and the pinch-out of the Lower Ecca Shales on the

northeast. The dry gas window is south of the approximately 30° latitude line, Figure X-1.

Major portions of the prospective area have volcanic (sill) intrusions and complex
geology, with the most extensive and thickest sills located within the Ecca Group.® This unusual
condition creates significant exploration risk in pursuing the Lower Ecca shale gas resources in

the Karoo Basin, Figure X-4.
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Figure X-2. Stratigraphic Column of the Karoo Basin of South Africa
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Figure X-3. Schematic Cross-Section of Southern Karoo Basin and Ecca Group Shales’
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Lower Ecca Group Shales

The Lower Ecca Group comprises the thick basal Prince Albert Formation, overlain by
the thinner Whitehill and Collingham Formations. Each of these sedimentary units has been
individually assessed and is discussed below.

Prince Albert Shales. The Lower Permian Prince Albert Formation offers a thick,
thermally mature shale gas area in the Karoo Basin. The drilling depths to the Prince Albert
Shale range from 6,000 to over 10,000 feet, averaging about 8,500 feet in the deeper
prospective area on the south, Figure X-5. The Prince Albert shale has a gross thickness that
ranges from 200 to 800 feet, averaging 400 feet, with a net organically rich thickness of about
120 feet.

Figure X-5. Lower Ecca Group Structure Map, Karoo Basin, South Africa'2?
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The total organic content (TOC) in the Prince Albert shale prospective area and within
the organically rich net pay interval generally ranges from 1.5 to 5.5%, averaging 2.5%, Figure
X-6. Local TOC values of up to 12% have been recorded.® However, in areas near volcanic

intrusions, much of the organic content may have been lost or converted to graphite.

Figure X-6. Total Organic Content of Prince Albert and Whitehill Formations
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Because of the presence of volcanics, the thermal maturity of the Prince Albert shale is
high, estimated at 2% to 4% Ro, placing the shale well into the dry gas window. In areas locally
influenced by volcanics the formation is over-mature, with vitrinite reflectance (Ro) values
reaching 8%, indicating that the organic content has been transformed into graphite and CO,,
Figure X-7. The Prince Albert shale was deposited as a deep marine sediment and is inferred

to have mineralogy favorable for shale gas stimulation.
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Figure X-7. Carbon Loss in Lower Ecca Group Metamorphic Shale
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Based on limited well data, primarily from the Cranemere CR 1/68 well completed in the
Upper Ecca interval, the Prince Albert shale appears overpressured and has a high geothermal

thermal gradient.

Whitehill Shale. The highly organically rich Lower Permian Whitehill Formation
contains one of the main shale gas targets in the Karoo Basin of South Africa. The drilling
depth to the Whitehill Shale ranges from 5,500 to 10,000 feet, averaging 8,000 feet for the
prospective area. The Whitehill Shale has an estimated gross organic thickness of 100 to 300
feet,® with an average net thickness of 100 feet within the prospective area, as shown by the

isopach map on Figure X-8."

The total organic content (TOC) in the prospective area (and within the net shale
thickness) ranges from 3% to 14%, averaging a highly rich 6%, Figure X-6. Local areas show
TOC contents up to 15%. In areas near volcanic intrusions, the remaining organic content may
range from 2% to 4%, with portions of the organics converted to graphite, Figure X-7. The main
minerals in the Whitehill Formation are quartz, pyrite, calcite and chlorite making the shale
favorable for hydraulic fracturing. The Whitehill Shale is assumed to be overpressured. The
thermal maturity (Ro) of the Whitehill Shale in the prospective area ranges from 2% to 4%,

placing the shale well into the dry gas window.
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Figure X-8. Preliminary Isopach Map of the Whitehill Formation2311
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The hydrogen and oxygen indexes of the Whitehill Formation indicate a mixture of Type |
and Type Il kerogen.9 The Whitehill carbon-rich shales were deposited in deep marine, anoxic
algae-rich conditions and contain minor sandy interbeds from distal turbidites and storm

deposits. '3

Collingham Shale. The Lower Permian Collingham Formation (often grouped with the
Whitehill Formation) is the third shale gas exploration target in the Karoo Basin. The
Collingham Shale has an upward transition from deep-water submarine to shallow-water deltaic
deposits.9 The drilling depth to the Collingham Shale averages 7,800 feet for the prospective
area. Except for total organic content, the shale has reservoir properties similar to the Whitehill
Shale. It has an estimated gross organic thickness of 200 feet; a net thickness of 80 feet; and
TOC of 2% to 8%, averaging 4% for the net thickness investigated. Thermal maturity is high,
estimated at 3% Ro, influenced by volcanic intrusions. The shale is assumed to be

overpressured based on data from the Upper Ecca Group.
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Shale Gas Resources

Prince Albert Shale. The prospective area of the Prince Albert Shale is estimated at
70,800 mi?. Within the prospective area, the Prince Albert Shale has a resource concentration
of about 43 Bcf/mi®. Given the volcanic intrusives and the limited exploration data, the risked
shale gas in-place is estimated at 453 Tcf. Based on favorable TOC and reservoir mineralogy,
balanced by complex geology and volcanic intrusions in the prospective area, ARI estimates a

risked technically recoverable resource of 91 Tcf for the Prince Albert Shale in the Karoo Basin.

Whitehill Shale. The prospective area for the Whitehill Shale is estimated at 70,800
mi2. Within this prospective area, the shale has a moderate resource concentration of about 59
Bcf/mi2. While somewhat more defined than the Prince Albert Shale, the exploration risk is still
substantial, leading to a risked shale gas in-place of 995 Tcf. Based on favorable reservoir
mineralogy but complex geology, ARI estimates a risked technically recoverable shale gas
resource of 298 Tcf for the Whitehill Shale in the Karoo Basin.

Collingham Shale. With a prospective area of 70,800 mi? and a resource concentration
of 36 Bcf/mi?, the risked gas in-place for the Collingham Shale is estimated to be 386 Tcf, with a

risked technically recoverable resource of approximately 96 Tcf.

Upper Ecca Shales

The Upper Ecca Formation extends over a particularly thick, 1,500 meter (~5,000 foot)
vertical interval in the southern Karoo Basin. It contains two shale sequences of interest - - the
Waterford and the Fort Brown Formations. These shales were interpreted by some
investigators to have been deposited in a shallow marine environment,? although others™

categorize them as lacustrine.

The organic content and thermal maturity of the Upper Ecca shale is considerably less
than for the Lower Ecca shale, having a total organic content (TOC) ranging from less than 1%
to about 2% and a thermal maturity ranging from 0.9% to 1.1% Ro. The reported thermal

maturity places the Upper Ecca shale in the oil to wet gas window.®

The Fort Brown Formation shale, as evaluated in the Cranemere CR 1/68 well, was
described as dark gray to black and carbonaceous with occasional siltstone stringers. These
shales exist over a gross interval of nearly 5,000 feet. One interval of the Fort Brown shale,
from 8,154 to 8,312 feet (2,563 to 2,612 m) tested 1.84 million cubic feet per day at a flowing

February 17, 2011 X-10 @

Advanced Resources
International, Inc



World Shale Gas Resources: An Initial Assessment

pressure of 2,072 psig, with pressure depleting rapidly, indicating the depletion of gas in

fractures and secondary porosity.

Because little additional information is publically available on the reservoir properties of
the Fort Brown and Waterford Formations, and because these shales may be oil prone, no

further assessment was conducted for the Upper Ecca shales.

The Role of the Karoo Basin on Early Jurassic (Toarcian) Global Warming
and Extinction

A most interesting aspect of the Karoo Basin is its potential role in triggering Early
Jurassic (Toarcian) global warming approximately 180 million years ago. The triggering
mechanism for the global warming, as presented by Svensen et al. (2006), was the rapid
formation and transport of greenhouse gases from the deep sedimentary Permian-age
reservoirs in the Karoo Basin. This event lasted 200,000 years and was manifested by global

warming of ~6°C, anoxic conditions in the oceans and extinction of marine species.

Large volumes of mafic magma intruded the basin in the Early Jurassic. These
magmatic sills and dykes were emplaced as part of the large Karoo-Ferrer igneous province,

which originally extended across all of current southern Africa.

The magma intrusions in the western Karoo Basin created numerous breccia pipes
which are sub-vertical cylindrical intrusions generally 20 to 150 meters in diameter, filled with
brecciated and metamorphic shale. Based on areal photography, several thousand of these
breccia pipes may exist in the Karoo Basin. The associated sills and contact metamorphism
resulted in venting of natural gas and CO, created by the thermal conversion of the organics in

the Ecca Group.

This massive intrusion to the organic-rich sedimentary host rocks of the Ecca Group
caused release of up to 1,800 Gt of CO, from organic matter in the western Karoo Basin.
(Potentially 15 times this amount of CO, (27,400 Gt) may have formed in the entire basin during
the intrusive event.)> In addition, the sills heated shallow sedimentary strata, leading to
metamorphic reactions and the formation of hundreds of hydrothermal vent complexes in the

central part of the Karoo Basin.®
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EXPLORATION AND DEVELOPMENT Activity

Falcon Oil and Gas Ltd. was an early entrant into the shale gas play of South Africa,
obtaining an 11,600-mi? (30,000-km?) Technical Cooperation Permit (TCP) along the southern
edge of the Karoo Basin. Shell obtained a larger 71,400-mi? (185,000-km?) TCP surrounding
the Falcon area, while Sunset Energy holds a 1,780 mi? (4,600-km?) TCP to the west of Falcon.
The Sasol/Chesapeake/Statoil JV TCP area of 34,000-mi? (88,000-km?) and the Anglo Coal
TCP application area of 19,300 mi? (50,000-km?) is to the north and east of Shell’s TPC, Figure
X-9.

Figure X-9. Map Showing Operator Permits in the Karoo Basin, South Africa’ 16
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Five older (pre-1970) wells have penetrated the Ecca Shale interval. Each of the wells
had gas shows, while one of the wells - - the Cranemere CR 1/68 well - - flowed 1.84 MMcfd
from the test zone at 8,154 to 8,312 feet. The gas production, judged to be from fractures and
secondary porosity in the shales, depleted relatively rapidly during the 24-hour test. The CR
1/68 well was drilled to 15,282 feet into the underlying Table Mountain quartzite and had gas
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shows from six intervals, starting at 6,700 to 8,700 feet and ending at 14,350 to 14,650 feet.

These shows indicate that the South African shales may be gas saturated.

Natural Gas Profile

Southern Africa produced 115 Bcf of natural gas in 2008. With annual consumption that
year of 228 Bcf, South Africa is a net importer, primarily from neighboring Mozambique and
Namibia. The natural gas is used primarily for electricity production and as feedstock for the
Mossel Bay gas-to-liquids (GTL) plant. (New natural gas production is expected from the
Jabulani field in 2012 and the Ibhubesi field in 2013.) Natural gas from Mozambique is imported
via a 535-mile pipeline, with current peak capacity of 524 MMcfd. Assuming access to new
natural gas reserves, a variety of plans have been set forth to expand the natural gas pipeline
system of South Africa, Figure X-10. The technically recoverable shale gas resource for South
Africa is estimated at 485 Tcf.

Figure X-10. Natural Gas Pipeline System Map of South Africa®'?
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XI. CHINA

World Shale Gas Resources: An Initial Assessment

INTRODUCTION

China has two large sedimentary basins that contain thick, organic-rich shales with

excellent potential for shale gas development, Figure XI-1. These two basins, the Sichuan and

the Tarim, contain marine-deposited shales with potentially favorable reservoir quality, including

prospective thickness, depth, TOC, thermal maturity, and brittle mineralogical composition. The

basins are assessed in detail in this chapter.

In addition, China has five sizeable but less

prospective shale gas basins with non-marine shales that are only introduced in this chapter.

Advanced Resources
International, Inc.

Figure XI-1. Major Shale Gas Basins and Pipeline System of China
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With shale exploration drilling just now being initiated, public information on shale
formations in China is quite limited. Reservoir quality remains uncertain, while in-country shale
drilling and completion services are still nascent. The future of shale gas development in China
is promising, but it seems likely that five to ten years will be needed before production will be at

material levels.

The two large marine shale basins of China - - the Sichuan and Tarim - - contain an
estimated 25,000 Tcf of total unrisked gas in place with 5,100 Tcf as the risked gas in place,
Table XI-1. These estimates are comparable with estimates of prospective gas resources (in-
place) published by PetroChina."? Our estimated risked recoverable resources from these two
basins is 1,275 Tcf.

Table XI-1. Shale Gas Reservoir Properties and Resources - - Sichuan and Tarim Basins, China

g Basin/Gross Area Sichuan Basini(81,500 mi?) Tarim Basin((234,200 mi?)
(%)
E Shale Formation Longmaxi Qiongzhusi 01/02/03 Shales | Cambrian Shales
Geologic Age Silurian Cambrian Ordovician Cambrian
2 Prospective Area (miz) 56,875 81,500 55,042 63,560
g Interval 300 - 1,600 200 - 1,400 0-5,200 0-1,500
& |Thickness (ft) |Organically Rich 560 390 520 808
(0]
= Net 280 195 260 404
£z Interval 7,900 - 13,500 8,500 - 15,000 6,500 - 19,700 7,500 - 21,000
o [Depth (ft)
Average 10,700 11,500 13,000 14,000
= ¥ |Reservoir Pressure Normal Normal Normal Normal
(<]
S @ |Average TOC (wt. %) 3.0% 3.0% 2.0% 2.0%
i 2 Thermal Maturity (%Ro) 2.30% 2.50% 2.00% 2.50%
Clay Content Low/Medium Low/Medium Low/Medium Low/Medium
g GIP Concentration (Bcfimi) 80 57 102 141
2  |Risked GIP (Tcf) 1,373 1,394 897 1,437
« |Risked Recoverable (Tcf) 343 349 224 359
February 17, 2011 XI-2
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SICHUAN BASIN / YANGTZE PLATFORM

Geologic Characterization

The Paleozoic shales in the Yangtze Platform underlie a vast area of some 900,000 km?
in the mid to lower reaches of the Yangtze River drainage area in south-central China, including
portions of Sichuan, Yunnan, Guizhou, Hubei, and western Hunan Provinces. A total 6 to 12 km
of sedimentary rock is present in this region, including thick, laterally widespread shales of both
marine and non-marine origin within Pre-Cambrian, Cambrian, Ordovician, Silurian, Devonian,

Permian, Triassic, and Eocene formations.

The Paleozoic shales in the Yangtze Platform are mainly of marine origin and generally
considered prospective for shale gas development. In contrast, the Triassic and younger shales
were deposited primarily in freshwater lacustrine environments.  Our work, consistent with
published information by PetroChina and industry, indicates that the Cambrian and Silurian

shales offer the most promise for shale gas development.

The Sichuan Basin in south-central China covers a large 81,500-mi? area. This cratonic
to foreland-style basin contains four tectonic zones: a Northwest Depression, a Central Uplift,
and the East and South Fold Belts. The Central Uplift, characterized by simple structure and
relatively few faults, appears the most attractive region for shale gas development. In contrast,
the East and South Fold Belts are structurally more complex, with numerous tight folds and

large faults, less conducive to shale gas development.

Two promising shale horizons have been identified in the Sichuan Basin. These are
thick, organic-rich, thermally mature Lower Cambrian and Lower Silurian marine shales, Figures
XI-2 and XI-3. Preliminary data indicate that these shales are low in clay and thus potentially
favorable for hydraulic stimulation. However, the Sichuan Basin’s considerable structural
complexity, with extensive folding and faulting, appears to be a significant risk for shale gas

development.
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Figure XI-2. Prospective Lower Silurian Shale Gas Areas, Sichuan Basin, Sichuan Province
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The Cambrian- and Silurian-age shales are the main targets for shale gas exploration in
the Sichuan Basin, Figure Xl-4. These two shale horizons have provided gas shows in
exploration wells and appear to have low-clay mineralogical composition owing to their
deepwater marine depositional environment. Conventional and tight gas reservoirs of Upper
Paleozoic- and Triassic-age in the Sichuan Basin were sourced primarily by these Cambrian
and Silurian black shales.
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Figure XI-4. Stratigraphic Column for Cambrian- and Silurian-Age Shales, Sichuan Basin
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The Cambrian and Silurian shales are thick, grey to black, carbon-rich (TOC of 3%),
thermally mature (R, of 2.3% to 2.5%), and currently buried at moderate depths. Although
freshwater lacustrine shales may locally be present, most shales of this age were deposited in a
marine environment. In addition, many of these shales are silty and could have retained modest

levels of porosity. ARI mapped Cambrian and Silurian shales to establish the prospective areas

with favorable reservoir characteristics for shale gas resources.
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Reservoir Properties (Prospective Area)

Conventional gas fields in the Sichuan Basin frequently have high levels of non-
hydrocarbon gases. ARI assumed the following values for shale gas composition: H,S levels
often are hazardously high (1% or more), while CO, (5%) and N, (7.5%) also can be significant.
For example, the Sinian (late Pre-Cambrian) natural gas reservoirs at Weiyuan gas field in
southwestern Sichuan Basin have high H,S content of 0.8% to 1.4%, while Chuangdongbei field
reaches 15% H,S.>  The reservoir pressure gradient at Weiyuan is close to hydrostatic (0.44

psi/foot).

» Silurian Longmaxi Formation. Best developed in the southern and eastern
Sichuan Basin, the Longmaxi Fm is mainly a grey-black silty shale. The thickness of
the organic-rich shale ranges from 100 m to 500 m, averaging about 170 m (560 ft).
Depth in the prospective region ranges from about 2,400 m to 4,100 m, averaging
about 3,250 m deep (10,660 ft). TOC ranges from 1.5 to 6%, averaging about 3%.
Vitrinite reflectance ranges from 1.8% to over 4.0% (average 2.3%), placing the
Longmaxi Shale fully in the dry gas window. Porosity is not known but estimated at
4% based on lithologic description. PetroChina has logged strong gas shows from
the Longmaxi Fm in seven conventional exploration wells across the southern
Sichuan Basin. Overall, the Silurian shales appear prospective, with high TOC,
moderate depth, albeit with significant levels of non-hydrocarbon constituents (H.S,
COg,, Ny).

= Cambrian Qiongzhusi Formation. The Cambrian Qiongzhusi Formation has fairly
consistent thickness across the Sichuan Basin, averaging about 120 m with a
maximum of 423 m. At Weiyuan gas field the Cambrian is 230 m to 400 m thick.
The Cambrian organic-rich shale averages about 120 m (390 ft) thick and 2,800 m
(9,180 ft) deep. TOC at Weiyuan is 2% to 4%, mainly sapropelic, and the shale is
thermally mature with R, above 2.5%, well within the dry gas window. Porosity is
estimated at 4%. CO, content at this field is approximately 5%, while N, averages
7.5% and H,S is assumed to be 1%. In 1966, a PetroChina well flowed nearly 1
MMcfd from an unstimulated carbonaceous shale at a depth of 2,800 m within the

Qiongzhusi interval.
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Shale Gas Resources

Sichuan is a large natural gas producing basin with 1.5 Bcfd productive capacity. A total
of 112 individual natural gas fields have been discovered with estimated 25 Tcf recoverable
resources. A significant proportion of these fields have challenging low-permeability reservoirs

and H,S levels often are high.

The Silurian Longmaxi organic-rich shale has an estimated average resource
concentration of 80 Bcf/mi®. These shales are at suitable depth and thermal maturity over about
70% of the Sichuan Basin, providing a prospective area of 56,875 mi’>. However, a significant
portion of the prospective area was screened out (risked) due to structural complexity. ARI
estimates 343 Tcf of risked recoverable resources from the Silurian Shale based on 1,373 Tcf of

total risked gas in place, Table I-1.

The Cambrian Qiongzhusi shale has an average estimated 57 Bcf/mi® resource
concentration. These shales are present essentially across the entire Sichuan Basin area,
though they are somewhat thinner than the Silurian shales. Structural complexity sterilizes an
estimated 70% of the basin area. ARI estimates 349 Tcf of risked recoverable resources from

the Cambrian Shale, out of a total 1,394 Tcf of risked gas in-place, Table XI-1.

Exploration Activity

As China’s earliest natural gas producing region, the Sichuan basin has a well-
developed network of natural gas pipelines. Large cities (Chongqing, Chengdu) and industrial
gas consumers (fertilizer, ceramics manufacturers) offer a ready market for the gas. Well
drilling services are available, including horizontal drilling and hydraulic fracturing. The Sichuan
Basin hosts numerous large operators (PetroChina, Shell, Chevron, ConocoPhillips, EOG) who
are evaluating and testing the shale- and tight-gas resources in the basin. However,
ConocoPhillips is the only operator in the Sichuan Basin to have selected its block based on
shale gas exploration quality. The other PSC’s in Sichuan were previously signed based on
tight gas sand and carbonate gas potential and are being opportunistically re-evaluated for
shale gas. These exploration programs are at an early data-gathering stage, with no commercial

shale gas production reported yet.
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= PetroChina. China’s most active shale gas explorer, PetroChina, is partnered with
several foreign companies in the Sichuan Basin and also operates its own
exploration program. PetroChina has noted that seven of the company’s
conventional exploration wells in the basin experienced gas kicks while penetrating
shales, including one well that flowed 1 MMcfd from an unstimulated shale. The
company reportedly spud its first dedicated shale gas test well in September 2010.
In December 2010, Sinopec reported that its first shale well (Yuanba-1), a vertical
test in the northeast part of the basin completed in shale at depths of 4,035-4,110 m,
flowed an encouraging 406 Mcfd after stimulation. PetroChina and Sinopec plans to
drill several more test wells and install several horizontal production pilots in various
locations during 2011. PetroChina’s production target for Sichuan shale gas is 100
MMcfd by 2015.

= Chevron. In 2008, Chevron assumed operation and 49% ownership (CNPC 51%) of
the 1,969-km? Chuandongbei block in the Sichuan Basin, in Dazhou, Wanyuan and
Chongqing-Kaixian districts. The block, originally acquired for tight gas
development, has extremely high H,S levels of up to 15%. Chevron is evaluating
the shale gas potential but no drilling has been announced yet. Further west of
Sichuan, Chevron reported in September 2010 that it is negotiating with Sinopec for

a shale gas exploration block near Guiyang.

= Shell. In March 2010, Shell announced it and CNPC had jointly submitted a 30-year
PSC application to the government for approval in the Sichuan basin, targeting tight
gas and shale gas resources within the 4,000-km? Jinqgiu region. In September
2010, Shell announced that, assuming its two planned exploration wells reveal good
potential, the company’s investment for this project could reach $1 billion annually for

each of the next five to seven years.

= EOG Resources. EOG holds a tight gas PSC in the Sichuan Basin that may also be
prospective for shale gas. EOG currently is evaluating the shale gas potential and
expects to decide sometime late 2010 whether or not to test the PSC with a shale

gas exploration well.

= Newfield Exploration. In 2006 Newfield reportedly evaluated shale gas at Weiyuan
gas field, where PetroChina had flowed 868 Mcfd from Cambrian Jiulaodong

February 17, 2011 XI-8 A

Armarced Aersarsan
Ieererienal irc



World Shale Gas Resources: An Initial Assessment

Formation in an unstimulated conventional vertical exploration well. However,

Newfield decided not to further pursue this shale gas opportunity.

= ConocoPhillips. The company reportedly is evaluating a 3,000-km? block in the

Sichuan Basin for shale gas development and may sign a PSC later in 2010.

TARIM BASIN

Geologic Characterization

The Tarim basin in western China’s Xinjiang Uyghur Autonomous Region is one of the
world’s largest frontier petroleum sedimentary basins, covering a total area of 234,200 mi?>. The
primary shale gas targets within the Tarim Basin are the lower Paleozoic sediments, particularly
the extensive shale source rocks of Cambrian and Ordovician age. These shales have
sourced major oil and gas resources in conventional reservoirs of Cambrian, Ordovician,
Carboniferous, and Triassic age, including over 5 billion barrels of oil equivalent hydrocarbons in

Ordovician carbonate rocks.

The Tarim Basin is sub-divided by fault systems into a series of distinct structural zones
including: (1) the Manjiaer Depression in the north; (2) the Tangguzibasi Depression in the
south; (3) the Awati Sag in the west; and (4) the Tadong Sag in the east, Figures XI-5 and XI-6.
The west-to-east cross-section A-C, Figure XI-7, shows deep, organic-rich shales of Ordovician
and Cambrian age at favorable depth and thermal maturity over the eastern Tarim Basin. The
south-to-north cross-section D-E, Figure XI-8, shows similar prospective targets for the northern
Tarim Basin. In the center of the Tarim Basin, the Tazhong and Tabei Uplifts — a west-plunging
large-scale nose, where the Mid-Upper Ordovician section has been removed by erosion during

the Hercynian Orogeny — the shales have low R, and are not prospective for development.®
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Figure XI-5. Tarim Basin’s Organic-rich Ordovician Shales. (Note location of cross sections A-B-C- and D-E.)
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Figure XI-6. Tarim Basin’s Cambrian Shales. (Note location of cross sections A-B-C- and D-E.)
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Figure XI-7. Tarim Basin West-To-East Cross-Section A-C for Ordovician- and Cambrian-Age Shales.

(See Figures XI-6 and XI-7 for Cross Section Location.)
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Figure XI-8. Tarim Basin South-To-North Cross-Section D-E for Ordovician- and Cambrian-Age Shales.
(See Figures XI-6 and XI-7 for Cross Section Location.)
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Ordovician black shales are the most important petroleum source rocks in the Tarim
Basin, Figure XI-9. Conventional oil reservoirs in the Tazhong Uplift are mainly found within
Mid-Upper Ordovician carbonates. Shale source rocks in the Heituao, Yijianfang, and
Lianglitage Formations grade from black and dark grey mudstone, to silty mudstone, to
argillaceous limestone. TOC ranges from 0.3% to 2.5%, averaging about 2.0% in the richer
sequences. Organics consist of kerogen, vitrinite-like macerals, as well as bitumen. Shale
depths range from 2,000 m to over 6,000 m (6,500 to 20,000 feet).
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Figure XI-9. Tarim Basin Stratigraphy Showing Organic-Rich Upper Ordovician and Lower Cambrian Shales.

February 17, 2011

Source: Modified from S. Li et al. / Organic Geochemistry 41 (2010) 531-553
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The Lower Ordovician Heituao (O1.,) shales appear to be the most prospective. These
shales range from 48 to 63 m thick, extend over the entire Manjiaer Depression, and consist of
carbonaceous, siliceous mudstone with radiolarian shale that are likely to be quite brittle. The
Middle Ordovician Yijianfang (O,) Saergan Formation shales, present in the Keping Uplift and
Awati Depression, are marine black mudstones some 10 m to 30 m thick, with TOC of 0.56% to
2.86% (average 1.56%). Upper Ordovician Lianglitage (O3) shales occur in the Central Tarim,
Bachu, and Tabei areas, where they are 20 m to 80 thick, carbonate-rich, but with relatively low
TOC (average 0.93%).

The Cambrian organic-rich shales, consisting of abyssal to bathyal facies mudstones,
occur in the Manjiaer Depression and the eastern Tarim and Keping Uplifts. TOC is reasonably
high (1.2% to 3.3%) in the Low (C4) and Middle (C,) Cambrian Formations and exceeds 1%
over about two-thirds of the Cambrian sequence. Evaporitic dolomites occur in the middle
Cambrian, with extensive salt and anhydrite beds totaling 400 to 1,400 m thick. Net organically-
rich shale thickness ranges from 120 m to 415 m, averaging about 120 m (400 ft). Thermal

maturity is well into the dry gas window (R, = 2.5%).

Shale Gas Resources

Ordovician organic-rich shales were mapped to define thickness, depth, TOC, and
thermal maturity. The thickest shale deposits occur in the Manjiaer Depression, reaching an
incredible 1,600 m of net organic-rich source rock. A second slightly thinner but still very
substantial deposit occurs in the Awati Depression, where organic-rich shales reach maximum
400 m thick. Both of these deposits are within the dry gas window (average R, approximately
2%). However, shale thickness and thermal maturity both decline markedly westward into the
Central Tarim and Bachu Uplifts (R, = 0.6% to 0.7%). TOC is moderately high, about 2% on
average with higher values indicated on well logs. Porosity is unknown but speculated to be

fairly high (6%) based on the marine, clay-poor environment of deposition.

Much of the organic-rich shale in the Tarim is too deep for shale development (>15,000
ft). Thus, the thickness in the Ordovician was reduced to an estimated average net 80 m (260
ft) at an average depth of approximately 3,960 m (13,000 ft). Based on these assumptions, ARI
estimates that the 55,042 mi? of prospective Ordovician shales in the Tarim Basin contain a total
897 Tcf of risked gas in place and 224 Tcf of risked recoverable resources, Table XI-1. Average

resource concentration is estimated at 102 Bcf/mi?, likely higher in sweet spots.
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Cambrian organic-rich shales appear to have even more gas potential than the
Ordovician shales. Cambrian shales reach more than 1 km thick in the Awati Depression and
over 1.4 km thick in the Manjiaer Depression, but are thin and become thermally immature
further to the west. Due to excessive depth (>15,000 ft), net organic-rich shale thickness was
reduced to about 404 ft at an average depth of 14,000 ft. Both of these deposits are well into
the dry gas window (average R, approximately 2.5%). TOC also is moderately high, about
2.0% on average and reaching higher levels in well logs. Porosity is unknown but speculated to

be about 5% based on a favorable marine, clay-poor environment of deposition.

Based on these assumptions, ARI estimates that Cambrian shales in the Tarim Basin
contain a total 1,437 Tcf of risked gas in place and approximately 359 Tcf of risked recoverable
resources, Table XI-1. Average resource concentration is estimated at 141 Bcf/mi?, likely higher

in sweet spots.

Exploration Activity

The Tarim Basin in remote western China holds the Kuche-Tabei, Bachu-Taxinan and
Tadong natural gas complexes, where 15 gas fields have been discovered with estimated
recoverable resources of about 21 Tcf. The Kela-2, Dina-2, Yaha and Hetianhe gas fields have
been developed. With productive capacity of close to 2 Bcfd, the Tarim Basin is China’s largest

gas-producing basin and a major source for the West-East Gas Pipeline.

To date no shale gas exploration or evaluation activity has been announced for the

Tarim Basin.

CHINA’S OTHER SHALE GAS BASINS

China has five other large sedimentary basins that contain shales deposited in mainly
non-marine environments, most often in ancient lakes (lacustrine) or fluvial settings that were
close to terrigenous sediment sources. These non-marine shale basins are likely to be clay-rich
and thus less prospective. In addition, many shale targets in these basins are thermally
immature and oil-prone. China’s five major non-marine basins include the Ordos, the Junggar,

the North China (Huabei), the Turpan-Hami, and the Songliao, shown on Figure XI-10.

February 17, 2011 XI-14 A

Armarced Aersarsan
Ieererienal irc



World Shale Gas Resources: An Initial Assessment

Figure XI-10. China’s Other Shale Gas Basins.
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Ordos Basin

The Ordos basin, a large (320,000-km?) coal-, petroleum- and CBM-productive
sedimentary basin is located in Shaanxi, Shanxi, Ningxia, and Inner Mongolia in north-central
China, Figure XI-11. Apart from its overthrusted western margin, the basin is structurally simple
with gently dipping flanks. Significant natural gas, nearly 2 Bcfd, is produced from low-
permeability carbonate reservoirs in the central Ordos Basin. The sedimentary sequence
comprises Paleozoic and Mesozoic clastic rocks, along with extensive coal deposits that were
deposited in mainly fluvial and lacustrine environments. The shales in the Ordos Basin exist in

the Triassic, Carboniferous and Permian.

The Triassic Tongchuan Formation shales in the Ordos Basin do not appear to have
viable shale gas potential. These shales were deposited in fluvial or lacustrine environments,
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are low in TOC, and are very high in clay (80%; mainly illite and chlorite), with very low quartz
(15%) and feldspar (5%) content. Likewise, Triassic Hujiachun Fm shales are lean, dominantly

clay (75%, mainly illite and chlorite), with low quartz (15%) and feldspar (10%).

Potentially higher quality shales occur in Carboniferous and Permian mudstones.® The
Carboniferous Taiyuan Formation contains black shales and limestones, but the formation is
interbedded with coal seams and other dominantly non-marine clastic sediments. The overlying
fluvial-dominated Permian Shanxi Fm contains thinner coal seams as well as thick non-marine
clastic rocks, Figure XI-12. Gas isotope data indicate that these coal seams, rather than
interbedded shales, were the main source rocks for the Ordovician gas fields in the central
Ordos Basin, Figure XI-13.7®

Figure XI-12. Ordos Basin (Permian Shanxi Fm) Non-

Figure XI-11. Ordos Basin’s Overthrusted Western
Margin and Simple Central Deep Shangbei Slope. Marine, Mainly Lacustrine Shales
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Figure XI-13. Cross-Section of Paleozoic Formations in the Ordos Basin, Showing Organic-Rich Source
Rocks in the Carboniferous Taiyuan and Permian Shanxi Formations.
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Junggar Basin

The Junggar Basin, a large (130,000-km?) petroliferous basin in western China’s
Xinjiang Autonomous Region, contains oil-prone and non-marine shales of Carboniferous to
Jurassic age. The Junggar is an asymmetric foreland basin containing a thick segment of
Paleozoic and Mesozoic sedimentary rocks, Figure Xl-14. The Wulungu and Central
Depression contain thermally immature source-rock shales. Only the North Tianshan Foreland

Depression is deep enough for gas-mature shales, Figures XI-15 and XI-16.

The Lower Carboniferous sequence is 2 to 3 miles thick, holding mainly marine
volcaniclastics that are high in clay and low in TOC. Overlying Mesozoic rocks, up to 4 miles
thick, are mainly non-marine clastic rocks. The primary target for shale gas exploration appears
to be the thick mudstones of Permian age, the main petroleum source rock in the basin, Figure
15. TOC can be high, averaging 4.3% in one 1,000 foot thick interval of dark gray Upper
Permian Lucaogou Fm mudstone and often reaching 20%, making this shale one of the world’s

richest petroleum source rocks.®
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The shales in the Junggar Basin were deposited primarily in lacustrine and fluvial

environments, resulting in clay-rich shales.

Moreover, the Junggar is a thermally immature

basin with abnormally low heat flow. Gas window maturities (R, > 1%) are attained only in the

North Tianshan foreland region at depths of greater than about 5,000 m, thus excluded from our

definition of prospective areas.'

Figure XI-14. The Junggar Basin’s Organic-Rich Jurassic and Permian Source Rocks.

Stratigraphy
Era Perlod |Epoch|Age Lithology S;ur;e Rese:'(vlor Seal 'I;hern::l
(Ma) Formation Th:dr:.';" ocC Roc Rock ven
Quaternary| Q Xiyu Qg ‘W""“E s Tecs
2.6 2 90
Dushanzl ¥,, | 207-10067——
Cenozolc N Taxihel N, | 100-320 e
Tertlary Shawan 00—
—_ N, | 160-500 ————
E fn [ 2mme | e (EE
Zniquanzl B, | 16-856 [ = = =
66 =TT 7
K2 Donggou K 46-818 =——=—=]
Cretaceous 96 = T s = 3 -
Ki Tugulu K, | 84-964 -
145.6 [~ -
I Kaleza 5, | so-so0 |[][[[][][][]
Qigu T | 144-088F—=
- Toutunhe 71, | 200-845 =
Jurassic | )2
Mesozolc . Xishanyao J. | 137-980
3 8angonghe J,, | 148-882[S
1 -
Badaowan 1, | 100-625
Ts | Baljlantan T, | 128457 .
227 e
Triasslc T2 Kelamay Ta | 260-450————
241 s
T Balkouquan 1, | s0-2e9 ===
us s =
P3 Upper Wuerhe ¢, =
~ -y | P"l wev iow CT—— :.
Permian | i | | Xlazljle r.,| sso—mo
Paleozolc o | | Fengonen v, | so-rmoo=re Z
i 200 Jiamuhe P, | 1800-4000—v—v—v"
c ===
Carboniferous = 320 s, oot e
C1 sid Baogutu ¢, e

H = = =P = = = [[mm

Siitstone Sandstone Gravel
Source: Modified from Xiao et al., AAPG Bulletin, v. 94, no. 7 (JULY 2010), pp. 937-955

Coal

Limestone Igneous rock Hiatus

February 17, 2011

XI-18

JAF21303 Al

L

Armarced Aerarzan
Ieererienal irc



World Shale Gas Resources: An Initial Assessment

Figure XI-15. Junggar Basin Structural Elements showing Wulungu, Central, and North Tianshan Foreland

Depressions. (Note location of cross-section line A-A’.)
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Figure XI-16. Junggar Basin Source-Rock Shales in the Jurassic and Permian
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North China (Huabei) Basin

East-central China’s North China Basin (Huabei) is a conventional oil and gas producing
region and includes the Shengli Qilfield, China’s second largest. The North China Basin, which
covers portions of Hebei, Henan, and adjoining provinces, contains extensive Carboniferous
and Permian source rock shales that are stratigraphically and lithologically similar to those in the
Ordos Basin, Figure XI-17."

The Carboniferous Taiyuan and Permian Shanxi Formations contain organic-rich but
non-marine deposited shales that are associated with coal seams. These shales are likely to be
clay-rich and ductile. In addition, the North China Basin is structurally complex with numerous
small grabens defined by northeast-southwest trending normal faults, active tectonics and
seismicity, and ongoing regional subsidence.”  Until additional data are obtained, the non-
marine nature of the shales and their structural complexity make the North China Basin non-

prospective for shale gas.

Figure XI-17. Cross-Section of the North China Basin with Active Normal and Strike-Slip Faults.
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Turpan-Hami Basin

The Turpan-Hami Basin, a medium-sized (54,000-km?) intermontane basin, is located in
Xinjiang, western China, midway between the Tarim and Junggar basins, Figure XI-18. Much
as in the Junggar basin, with which it was connected prior to early Mesozoic tectonic uplift, the
Turpan-Hami basin contains late Paleozoic to Mesozoic lacustrine-deposited shales that are

thermally immature for gas.™

Figure XI-18. The Turpan-Hami Basin Source Rocks Include Upper Permian And Middle Jurassic Mudstones
with High TOC.
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Upper Permian source rock mudstones in this basin correlate with similar-aged, low-rank
lacustrine deposits in the adjacent Junggar Basin, Figure XI-19. For example, the Permian
Tarlong Formation mudstones can have high TOC (3.6% to 8.2%), but are thermally immature
(Ro = 0.5%), even in the deep Tainan depression where shales reach 5,000 m depth. Middle
Jurassic Qiketai Formation lacustrine shales are not yet gas mature (R, = 0.76%) in the Taibei
depression. The shallower Lower to Middle Jurassic coal-rich mudstones appear to be clay-rich
and are even less thermally mature (maximum R, = 0.56%). The Turpan-Hami Basin does not

appear to be prospective for shale gas.
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Figure XI-19. Turpan-Hami Basin Stratigraphic Column.
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Songliao Basin

The Songliao Basin, a large (150,000-km?) petroliferous basin in northeastern China
hosts the Daging Oilfield (China’s largest), also contains Mesozoic non-marine shale source
rocks, Figure XI-20. Located in Heilongjiang and Jilin Provinces, the Songliao, along with the
nearby Hailar and Erlian basins, consist of dozens of small pull-apart half-grabens which formed
during Late Jurassic to Cretaceous time as India collided with the Asian continent, Figure XI-
21.M
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Figure XI-20. The Songliao, Hailar, and Erlian Rift Basins in Northeast China.
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The main organic-rich shales are the Lower Cretaceous Shahezi and Yingcheng
Formations, comprising 2,000 feet of dark mudstone with TOC ranging from 0.46% to 2.46%. In
addition, high TOC shales exist in the Cretaceous Jiufotang Formation, up to 2,400 feet thick
with 2.5% to 3.5% TOC. These shales were formed in lakes with no significant deepwater
marine influence. Because these shales are deep, exceeding 5,000 m, thermally immature, and

rich in clay they are classified as non-prospective.
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Figure XI-21. The Songliao Basin’s Numerous Small Pull-Apart Grabens.
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Natural Gas Profile

China produced 2,929 Bcf of natural gas in 2009'°, up 8 percent from 2008, with
consumption slightly higher at 3,075 Bcf. Approximately 45 percent of the consumed gas was
utilized for industrial purposes. As of January 2010, China’s proven natural gas reserves stand
at 107 Tcf.

Exploration Activity

The level of industry interest in China shale gas is increasingly rapidly. China’s Ministry
of Land and Resources (MLR) established a National Gas Shale Research Center in August
2010. PetroChina, Sinochem and CNOOC are initiating exploration in China, as are several
foreign oil companies. MLR recently (October 28, 2010) announced plans to offer six shale gas
exploration blocks within the next month. Bidding will be limited to four Chinese companies
(PetroChina, Sinopec, CNOOC, and Shanxi Yanchang Petroleum Group). Foreign companies
would be allowed to cooperate with bid winners. MLR envisions opening blocks to foreign
bidding eventually, but no timetable has been announced.
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As China’s earliest natural gas producing region, the 230,000-km? Sichuan Basin has a
well-developed network of natural gas pipelines. Large cities (Chongging, Chengdu) and
industrial gas consumers (fertilizer, ceramics manufacturers) are present. PetroChina, Shell,
Chevron, ConocoPhillips, BP, as well as EOG Resources are investigating the shale gas

potential in Sichuan and further southwest in Guizhou Province.
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XII. INDIA/PAKISTAN

INTRODUCTION

India and Pakistan contain a number of basins with organic-rich shales. For India, the
study assessed four priority basins: Cambay, Krishna Godavari, Cauvery and the Damodar
Valley sub-basins such as Raniganj, Jharia and Bokaro. The study also screened several other
basins of India, such as the Upper Assam, Vindhyan, Pranhita-Godavari and South Rewa, but
found that either the shales were thermally too immature for gas or the data with which to
conduct a resource assessment were not available. For Pakistan, the study addressed one

priority shale gas basin - - Southern Indus, Figure XII-1.

Figure XlI-1. Shale Gas Basins and Natural Gas Pipelines of India/Pakistan
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Shale basins in India and Pakistan are geologically highly complex. Many of the basins,
such as the Cambay and the Cauvery, have horst and graben structures and are extensively
faulted. The prospective area for shale gas in these basins is restricted to a series of isolated
basin depressions (sub-basins). While the shales in these basins are thick, considerable
uncertainty exists as to whether (and what interval) of the shale is sufficiently mature for gas

generation.

Recently, ONGC drilled and completed the India’s first shale gas well, RNSG-1,

northwest of Calcutta in West Bengal.

The well was drilled to a depth of 2,000 meters and

reportedly had gas shows at the base of the Permian-age Barren Measure Shale. Two vertical

wells (Well D-A and D-B) were previously tested in the Cambay Basin and had modest oil and

shale gas production in the shallower, 4,300-foot thick intervals of the Cambay “Black Shale”.’

Overall, ARI estimates a total of 496 Tcf of risked shale gas in-place for India/Pakistan,

290 Tcf in India and 206 Tcf in Pakistan, Table XlI-1. The technically recoverable shale gas

resource is estimated at 114 Tcf, with 63 Tcf in India and 51 Tcf in Pakistan. These estimates

could increase with collection of additional reservoir information.

Table XlI-1. Shale Gas Reservoir Properties and Resources of India/Pakistan

. Cambay Basin Damodar. Valley Krlshlna- .| Cauvery Basin Southern Indus Basin
Basin/Gross Area (20,000 mi?) Basin Godavari Basin (9,100 mi?) (67,000 mi?)
g ’ (1,410 mi?) (7,800 mi?) ’ ’
o)
o . .
ﬁ Shale Formation Cambay Shale || Barren Measure Kommugudem Andlmacllam Semb.ar Ramk?t
Shale Formation Formation Formation
. Upper ) . .
Geol A g
eologic Age Cretaceous/Tertiary Permian-Triassic Permian Cretaceous | Early Cretaceous | Paleocene
2 Prospective Area (mi’) 940 1,080 4,340 1,005 4,000 4,000
g Interval 1,600 - 4,900 0-2,100 3,100 - 3,500 600 - 1,200 1,500 - 2,500 2,000 - 4,000
& |Thickness (ft) |Organically Rich 1,500 1,050 1,000 800 1,000 1,500
©
= Net 500 368 300 400 300 450
'§>. Depth (f) Interval 11,500 - 16,400 3,280-6,560 | 6,200-13,900 [ 7,000-13,000 || 13,000- 15,000 | 10,000 - 13,000
P Average 13,000 4,920 11,500 10,000 14,000 11,500
= ¥ |Reservoir Pressure Moderaty Moderaty Normal Normal Normal Normal
S s Overpressured || Overpressured
@ & [Average TOC (wt. %) 3.0% 4.5% 6.0% 2.0% 2.0% 2.0%
& g Thermal Maturity (%Ro) 1.10% 1.20% 1.60% 1.15% 1.25% 1.15%
Clay Content Medium High High High Low Low
g GIP Concentration (Bcf/miz) 231 123 156 143 100 157
2 |Risked GIP (Tcf) 78 33 136 43 80 126
« |Risked Recoverable (Tcf) 20 7 27 9 20 31
February 17, 2011 XlI-2

A

Advanced Resources
International, Inc



World Shale Gas Resources: An Initial Assessment

Cambay BASIN, INDIA

The Cambay Basin is an elongated, intra-cratonic rift basin (graben) of Late Cretaceous
to Tertiary-age located in the State of Gujarat in northwestern India. The basin covers an
onshore area of about 20,000 mi®. The basin is bounded on its eastern and western sides by
basin-margin faults. It extends south into the offshore Gulf of Cambay, limiting its onshore area,

and north into Rajasthan?, Figure XII-2.

Geologic Characterization (Cambay “Black Shale”)

The Deccan Trap Group, composed of horizontal lava flows, forms the basement of the
Cambay Basin. Above the Deccan Trap, separated by the Olpad Formation, is the late
Paleocene and early Eocene Cambay “Black Shale”, Figure XII-3°. The Cambay “Black Shale”
represents the marine transgressive episode in the basin. The organic matter, ranging from
2.0% to over 4.0%, averages 3% and is primarily Type lll (humic) with some Type II, Figure XIlI-
4. With a thermal maturity ranging from about 0.6% to 2%, the shale is in the oil to dry gas
window.* However, considerable uncertainty exists as to the specific location of the top of the
gas window in the depression areas of this basin. For purposes of this study, we have assumed
that the gas window is generally below 10,000 feet, Figures XlI-5 and XII-6

The depth to the top of the Cambay “Black Shale” ranges from about 6,000 feet in the
north to greater than 13,000 feet in the lows of the southern fault blocks, Figure XlI-7. The
“Black Shale” interval ranges from 1,500 feet thick to more than 5,000 feet thick.®> In the
northern Mehsana-Ahmedabad Block, the Kadi Formation forms an intervening 1,000-foot thick
non-marine clastic wedge within the “Black Shale” interval. In this block, the organic-rich shale
thickness varies from 300 to 3,000 feet, with the net completable gas bearing shale thickness
located in the lower portion of the Cambay “Black Shale” interval, averaging about 500 feet,
Figure XlII-8. Thermal gradients are high, estimated at 3°F per 100 feet, contributing to

accelerated thermal maturity of the organics. °
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Figure XlI-2. Cambay Basin Study Area.
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Figure XII-3. Generalized Stratigraphic Column of the Cambay Basin.
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Figure Xll-4. Organic Content of Cambay “Black Shale”, Cambay Basin Figure XII-5. Cross Section of Cambay “Black Shale” System
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Figure XII-7. Depth and Thermal Maturity of Cambay “Black Shale”,

Cambay Basin

Sources: =%
Bhowmick & Misra, 2009
Saxena, et al., 2007
‘Wandrey, 2004
Banerjee & Rag, 1983
[Bhandri & Chowdhary, 1975
USGS, 2000 —

Cambay Basin

[ Basin outiine

- Depocenter

——— Cambay Shale Depth (m)

—— Cambay Shale Vitr, Rell, (%Ro) [

s Cross Section
0l Ciy
0510 20 30 40

0 5 10 20 30

February 17, 2011

Saurces:

Rao, 2010
Bhowmick & Misra, 2009
Saxena, et al., 2007
Wandrey, 2004
Banerjee & Rao, 1993
Bhandri & Chowdhary, 1375
USGS, 2000

Cambay Basin
Cambay Shale
Isopach (m)

<500
I s00 - 1000
[ ~ 1000
[ Basin Outiine
- Depocenter

— Cross Section

World Shale Gas Resources: An Initial Assessment

Figure XlI-8. Gross Isopac of Cambay Black Shale, Cambay Basin
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The Cambay Basin contains five distinct fault blocks, from north to south: (1) Sanchor

Patan; (2) Mehsana-Ahmedabad; (3) Tarapur; (4) Broach; and (5) Narmada (Sivan et al., 2008),

Figure XII-2. Each of these blocks is characterized by local lows, some of which appear to have

sufficient thermal maturity to be prospective for shale gas, Table XII-2.”

Table XlI-2. Prospective Areas For “Black Shale” of Cambay Basin

Fault Blocks Iﬁe&:c(mtgr Comments
1. | Sanchor Patan 240 Too Shallow for Shale Gas
2. | Mehsana-Ahmedabad 290 One Prospective Area
3. | Tarapur 320 One Prospective Area
4. | Broach 330 One Prospective Area
5. | Narmada 120 Insufficient Data

Mehsana-Ahmedabad Block. Three major deep gas areas (depressions) exist in the
Mehsana-Ahmedabad Block - - the Patan, Worosan and Wamiji. A deep well, Well-A, was
drilled in the eastern flank of the Wamiji Low to a depth of nearly 15,000 feet, terminating
below the “Black Shale”. In addition, a few wells were recently drilled to the Cambay Shale
in the axial part of the graben low. A high pressure gas zone was encountered in the Upper
Olpad section next to the Cambay Shale, with methane shows increasing with depth.
Geochemical modeling indicates an oil window at 6,600 feet, a wet gas window at 11,400

feet and a dry gas window at 13,400 feet respectively.®

Broach and Tarapur Blocks. The deeper Tankari low in the Broach Block and the low in
the Tarapur Block appear to have a similar thermal history as the Mehsana-Ahmedabad
Block depression and thus also may have shale gas potential, particularly in the lower

interval of the Cambay “Black Shale” in the Broach and Tarapur depocenters.
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Resources (Cambay “Black Shale™)

Using the criteria of vitrinite reflectance (Ro) greater than 1.0% and formation depth
between 10,000 and 16,500 feet, we calculate a prospective area of 1,940 mi? for the “Black
Shale” of the Cambay Basin, Figure XII-9.°

Based on the estimated prospective area of 1,940 mi? and an average value of 500 feet
for net shale, ARI estimates a risked gas in-place for the Cambay “Black Shale” of 79 Tcf,

approximately 20 Tcf of which may be technically recoverable.

Activity

Although the shales in the Cambay Basin have been identified as a priority area by
ONGC, no plans for exploring these shales have yet been publically announced. However, two
shallower conventional exploration wells (targeting the oil-bearing intervals in the basin)
penetrated and tested the Cambay “Black Shale”. Well D-A, a vertical well, had gas shows
while drilling the Cambay “Black Shale” in a 90-foot section at a depth of about 4,300 feet. After
hydraulic stimulation, Well D-A produced 13 B/D of oil and 11 Mcfd of gas. Well D-B, an older
vertical well drilled in 1989 to a depth of 6,030 feet, had also encountered the Cambay Shale at
about 4,300 feet. The well was subsequently hydrofractured and produced 13 B/D of oil and 21
Mcfd of gas.
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Figure XII-9. Prospective Areas of the Cambay “Black Shale”, Cambay Shale Basin
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KRISHNA GODAVARI BASIN, INDIA

The Krishna Godavari Basin extends over a 7,800 mi® area onshore (plus additional area

in the offshore) in eastern India. The basin consists of a series of horsts and grabens, as shown

on Figure XI1-10"°. The basin contains a series of organically rich shales, including the deeper

Permian-age Kommugudem Shale, which is gas prone (Type lll organics) and appears to be in

the gas window in the basin grabens. The Upper Cretaceous Raghavapuram Shale and the

shallower Paleocene- and Eocene-age shales are in the oil window and thus were not assessed

by this study.

Figure XII-10. Krishna Godavari Basin’s Horsts and Grabens
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Geologic Characterization (Kommugudem Shale)

The Kommugudem Shale is a thick Permian-age rock interval containing alternating
sequences of carbonaceous shale, claystone, sand and coal, Figure XlI-11. The Mandapeta
Graben, the most extensively explored area of the Krishna Godavari Basin, provides much of

the geologic characterization data for this basin. The shale interval in this graben ranges from
945 to 1,065 m in thickness."

Figure XII-11. Stratigraphic Column, Mandapeta Area, Krishna Godavari Basin'!
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An average continuous organic-rich area of 140 m was tested in 10 wells. The data
show that the TOC of the Kommugudem Shale ranges up to 11% with a more typical range of

3% to 9%, averaging 6%, for ten rock samples at various depths, Table XII-3.

Table XII-3. Analysis of Ten Rock Samples, Kommugudem Shale2

Well D(en‘:;h -I;?AS: S7 Interva?bl'taalseted (m)
AA-1 3,320-3,880 10.4 7.0 110
AA-2 3,585-3,630 4.2 2.9 45
AA-9 3,330-3,360 7.1 6.4 30
AA-10 3,880-3,920 3.1 0.6 40
AA-11 2,890-3,150 7.0 7.9 260
BW-1A 3,915-4,250 5.6 0.8 335
BW-2 2,970-3,085 8.8 5.5 115
BW-2 3,100-3,175 7.8 6.0 75
BW-9 2,800-3,040 11.2 6.9 315
DE-1 1,900-2,040 8.9 13.9 120

*Volume of hydrocarbon cracked from kerogen by heating to 550°C, measured in terms of mg hydrocarbon/g rock.

The Kommugudem Shale was deposited in fluvial, lower deltaic, and lacustrine
environments. While an effective source rock with excellent organic matter richness, analysis of
the shale indicates hydrogen-deficient organic matter (based on low S, values from pyrolysis)
and high levels of primary inertinite. The average depth of the shale is 11,500 feet in the graben
structures. The organically rich shale interval is estimated at 1,000 feet, with a completable net
pay of 300 feet.

Vitrinite reflectance of the Kommugudem Shale in the deep graben structures ranges
from 1.2% to 2% Ro, placing the shale inside the wet to dry gas window. Figure XlI-12 provides
a useful illustration of the relationship of the depth and geologic age of the deposition in the
Krishna Godavari Basin to the thermal maturity (Ro) for two of the graben structures,
Kommugudem (KMG) and Mandapeta (MDP).
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Figure XlI-12. Cross Section for the Krishna Godavari Basin '
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The shale appears to be normally overpressured. Given the fluvial lacustrine deposition,
we anticipate the clay content of the shale to be moderately high.

Resources (Kommugudem Shale)

The 4,340 mi® prospective area of the Kommugudem Shale in the Krishna Godavari
Basin is limited to the four grabens (sub-basins) where the thermal maturity is sufficiently high
for wet to dry gas generation, Figure XlI-13. Based on an average resource concentration of
156 Bcf/mi? for the four graben areas, we estimate a risked shale gas in-place of 136 Tcf, with a
risked technically recoverable resource of 27 Tcf.

Activity

The technical literature discusses 16 wells that have been drilled at the Mandapeta
graben into or through the Kommugudem Shale in search for hydrocarbons in the Mandapeta
and Gollapalli sandstone reservoirs. The information from these 16 wells has provided valuable
data for this study.
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Figure XlI-13. Prospective Areas for Shale Gas in the Krishna Godavari Basin
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CAUVERY Basin, India

The Cauvery Basin covers an onshore area of about 9,100 mi® on the east coast of
India, plus an additional area of about 9,000 mi? in the offshore, Figure XlI-14. The basin
comprises numerous horsts and rifted grabens. The basin contains a thick interval of organic-
rich source rocks in Lower Cretaceous Andimadam and Sattapadi shale formations which overly

the Archaean basement.

Figure XII-14. Cauvery Basin Horsts and Grabens
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Geologic Characterization

The gas prone source rocks in the Cauvery Basin are the Lower Cretaceous
Andimadam Formation and the Sattapadi Shale, Figure XII-15 and Figure XII-16. The source
rock is generally Type Ill with some Type Il. The thermally mature source rocks are limited to

the deeper Andimadam Formation which contain thermogenic natural gas.

The oldest rocks in the Cauvery Basin are the shallow marine, late Jurassic sediments
and early Cretaceous deposits. The thickness of the Lower Cretaceous interval is 3,000 to
5,000 feet, with the Andimadam/Sattapadi Shale accounting for the bulk of the gross interval.
The TOC of the Andimadam/Sattapadi Shale is estimated at 2% to 2.5%.

The Cauvery Basin contains a series of depressions (sub-basins) that hold potential for
shale gas, with two of these - - Ariyalur-Pondicherry and Thanjavur - - containing thick, thermally

mature shales, Figure XII-17.

e Ariyalur-Pondicherry Sub-Basin. The Ariyalur-Pondicherry Depression (sub-basin) is in
the northern portion of the Cauvery Basin. The Lower Cretaceous Andimadam/ Sattapadi
Shale encompasses a 5,000 foot thick interval at a depth of 6,600 to 11,600 feet. Organic-
rich gross pay ranges from 600 to 1,200 feet thick, with an average completable net pay of
about 450 feet, Figure XlI-16. The organic richness (TOC) ranges from 0.3 to 2.8%,
averaging about 2%. The thermal maturity of 1.15% Ro places the shale in the wet gas
window at 10,000 feet deep. The onshore prospective area with thick organic-rich shale is

rather small, estimated at 620 mi?, Figure XII-18.

e Thanjavur Sub-Basin. The Thanjavur Depression (sub-basin), in the center of the Cauvery
Basin, has a thick section of Andimadam and Sattapadi shale encompassing an over 8,000
foot thick interval at a depth of 5,000 feet (top of Sattapadi Shale) to 13,000 feet (base of
Andimadam Fm), averaging 9,000 feet deep. The organic-rich interval is 600 feet thick, with
an average completable net pay of about 300 feet, Figure XII-19. Given limited data, we
assume the TOC and thermal maturity for the shale in this sub-basin to be similar to the
Ariyalur-Pondicherry sub-basin. The onshore prospective area with thick organic-rich shale

is small, estimated at 385 mi?, Figure XII-18.
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Figure XII-16. Generalized Straigraphy of the Cauvery Basin
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Figure XlI-17. Shale Isopach and Presence of Organics, Cauvery Basin Figure XII-18. Prospective Areas for Shale Gas, Cauvery Basin
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Figure XII-19. Thanjavur Sub-Basin and Geological Section Across Cauvery Basin.
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With a combined prospective area of 1005 mi? and an average resource concentration of
143 Bcf/mi?, we estimate a risked shale gas in-place of 43 Tcf, of which 9 Tcf are considered
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Damodar Valley Basin, India

The Damodar Valley Basin is part of a group of basins collectively named the
“Gondwanas”, owing to their similar dispositional environment and Permo-Carboniferious
through Triassic stratigraphic fill. The “Godwanas,” comprising the Satpura, Pranhita-Godavari,
Son-Mahanadi and Damodar basins, were part of a system of rift channels in the Northeast of
the Gondwana super continent. Tectonic activity formed the major structural boundaries of

many of the Gondwana basins, notably the Damodar Valley Basin, Figure XII-20.

Figure XII-20. Damodar Valley Basin and Prospectivity for Shale Gas
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Sedimentation in the Early Permian Gondwana basins was primarily glacial-fluvial and
lacustrine, resulting in significant deposits of coal. As such, the majority of the exploration
activities have focused on the basins’ coal resource potential, which accounts for essentially all
of India’s coal reserves (about half of which are in the Damodar Valley Basin). However, a
marine incursion took place between periods of continental deposition, depositing a layer of

early Permian shale, called the “Barren Measure” Shale Formation, Figure XII-21'. This
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formation, called the Ironstone Shale in the Raniganj sub-basin is the target of India’s first shale
gas exploration well in the eastern Damodar Valley. Though present in other Gondwanan
basins, such as the Rewa Basin in the state of Orissa, data suggest that the shale is only

thermally mature to the east, probably only within the Damodar Valley Basin™.

Figure XlI-21. Regional Stratigraphic Column of the Damodar Valley Basin, India®s.
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The Damodar Valley Basin comprises of a series of sub-basins (from west to east, the
Hutar, Daltonganj, Auranga, Karanpura, Ramgarh, Bokaro, Jharia and Raniganj). Though these
sub-basins share a simalar geologic history, tectonic events and erosion since the early Triassic

have caused extensive variability in the depth and thickness of the Barren Measure Shale
formation.

Because exploration has focused on the coal deposits within the Damodar Valley basin,
relatively little geologic data is available on the Barren Measure Shale. Thermal maturity data on
coals surrounding the Barren Measure Shale suggest that it is within the gas window, and
regional studies have shown favorable TOC. Shallower burial depth is the main limitation for
the shale gas prospectively of the Barren Measure Shale in the Damodar Valley Basin. In some
sub-basins, regional erosion has removed up to 3 kilometers of overlying sediments. Based on
regional stratigraphic columns, such as that shown in Figure Xll-22, and operator data, the
prospective area for the Barren Measure Shale was limited to the Bokaro, Karanpura and

Raniguj sub-basins. The small prospective area within the Bokaro (110 mi®) and Raniganj (650

February 17, 2011 Xll-21 A

Advanced Resources
International, Inc.



EIA International Shale Gas Report

mi?) basins was limited by surface outcrops of formations underlying the Barren Measure to the
west and north, respectively. We have estimated a moderate size prospective area for the
northern half of the Karanpura Basin (320 mi®), based on statements by Schlumberger and
ONGC.™

Figure XII-22. Generalized Stratigraphic Column of the Gondwana Basin.
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Geologic Characterization (Barren Measure Formation)

Absent specific data on thermal maturity and organic content in each of the sub-basins,
We assigned average published values for the region. TOC is assumed to range between 3%
and 6%, based on information from INOC and ESSAR'"'®. Thermal maturity was estimated
from the coal formations surrounding the Barren Measure Shale, indicating values between
1.1% to 1.3% Ro, placing the shale within the wet gas window'. Depth to the Barren Measure
Shale averages about 5,000 feet, based on reports from the shale gas well drilled into the
Raniganj sub-basin and regional cross sections, Figure XlI-23. Using regional stratigraphic
columns, we estimate a weighted average gross interval thickness in the three prospective sub
basins of 2,100 feet, of which about 1,050 feet are organically rich and 368 feet are net shale,
Figure XXI1-22%°,

Figure XlI-23. Raniganj Sub-Basin Cross Section.!
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Resources

Using the geologic characteristics discussed above, we estimate that the Damodar
Valley Basin contains a favorable resource concentration of 123 Bcf/mi?. Risked gas in-place is
33 Tcf, reduced for the significant faulting present in the basin, Figure Xll-20. We estimate
approximately 7 Tcf of shale gas may be technically recoverable from the Barren Measure shale

in this basin.

Activity

Along with the Cambay Basin, the Damodar Valley Basin is a priority basin for shale gas
exploration by the Indian government. In late September 2010, Indian National Oil and Gas
Company (ONGC) spudded the country’s first shale gas well, RNSG-1 in the Raniganj sub-
basin. The well was completed mid-January 2011, having reportedly encountered gas flows
from the Barren Measures Shale at approximately 5,600 feet. Detailed well test or production
results are not publicly available. This well was the first of a 4 well R&D program in the basin.
The plan calls for an additional well in the Raniganj sub-basin and an additional two wells in the

Karanpura sub-basin by March 2012.
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UPPER ASSAM BASIN, INDIA

The Upper Assam Basin is an important onshore petroleum province in northeast India.
The basin has produced oil and some associated gas, mainly from the Upper Eocene-Oligocene
Barail Group of coals and shales. In general, the TOC in the lower source rocks ranges from
1% to 2% but reaches 10% in the Barail Group. These source rocks are in the early thermal
maturity stage (beginning of the oil window) in the shallower parts of the Upper Assam Basin
and may have sufficient thermal maturity for peak oil and onset of gas generation in the deeper

parts of the basin toward the south and southwest.?

The thermal maturity values range from Ro of 0.5 to 0.7% for the Sylhet and Kopili
formations and range from Ro of 0.45% to 0.7% for the Barail Group, placing these shales in the
early oil window.?® While the shales may reach the wet gas window in the deepest portion of the
basin, the measured vitrinite reflectance is still at only 0.7% (oil window) down to a depth of
14,800 feet.”

PRANHITA-GODAVARI BASIN, INDIA

The Pranhita-Godavari Basin, located in eastern India, contains thick, organically rich
shales in Permian-age (Lower Gondwana) Jai Puram and Khanapur formations. While the
kerogen is Type Il (humic) and thus favorable for gas generation, the 0.67% Ro indicated the

shales are thermally immature for shale gas production.

VINDHYAN BASIN, INDIA

The Vindhyan Basin, located in north central India, contains a series of Proterozoic-age
shales. While certain of these shales, such as the Hinota and Pulkovar, appear to have

sufficient organic richness, no public data exists on their thermal maturity.

RAJASTHAN BASIN, INDIA

The Rajasthan Basin covers a large onshore area in northwest India. The basin is
structurally complex and characterized by numerous small fault blocks. The Permian-age
Karampur Formation is the primary source rock in this basin. While the source rock is Type llI

and classified as mature, only limited data are available on the reservoir properties of this shale.
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SOUTHERN INDUS BASIN, PAKISTAN

The Southern Indus Basin is located in southern Pakistan adjacent to the border with
India. The basin is bounded by the Indian Shield in the east and highly folded and thrust
mountains on the west. On the north, the Jacobabad Arch separates the Southern Indus Basin
from the Central Indus Basin. Within the basin, the shales in the deeper portions of the Karachi

Trough appear to have reached the wet to dry gas window, Figure Xl1-24.2°

The Southern Indus Basin has five commercial oil discoveries and one gas discovery in
the conventional Cretaceous-age Goru Fm sands and three gas discoveries and one gas-
condensate discovery in shallower formations. While oil and gas shows have been recorded in
the Sembar Shale on the Thar Platform, no productive oil or gas wells have been drilled into the

Sembar Shale.?®

Figure XII-24. Basin Outline and Karachi Trough, Southern Indus Basin
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Geologic Characterization (Sembar Shale)

The Lower Cretaceous Sembar Formation is considered to be the main source rock in
the Southern Indus Basin due to its organic richness and thermal maturity. The formation
contains of shale, silty shale and marl in the western and northwestern portion of the basin and
becomes sandy in the eastern part of the basin. While the reported log porosities in a
previously drilled well were high, ranging from 9% to 30%, a drill stem test showed water with

only a small volume of gas.

The Sembar Formation was deposited under open-marine conditions. In the shale gas
prospective area of the Karachi Trough, the thickness of the Sembar Shale ranges from 1,500
to 2,500 feet, Figure XlI-25. We identified an organically rich interval 1,000 feet thick and a
completable net shale thickness 300 feet thick. We estimate TOC of approximately 2% and an
Ro of 1.0% to 1.5%, with low clay content. The bulk of the sediments in the basin appear to be
primarily in the oil window with the lower limit of the oil window at about 10,000 feet in the
Karachi Trough. In the deeper portions of the Karachi Trough, the Sembar Shale enters the wet

gas window.

The thermal gradients in the basin increase from east to west, from 1.31°F/100 ft on the
Thar Slope in the east to 2.39°F/100 ft in the Karachi offshore in the west. The thermal gradient
in the Karachi Trough is about 2.1°F/100 ft.

Resources (Sembar Formation)

Based on an estimated prospective area of 4,000 mi? and a resource concentration of
100 Bcf/mi?, we estimate the risked shale gas in-place for the Sembar Formation at 80 Tcf, with

20 Tcf as technically recoverable.
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Figure XII-25. Isopach of Sembar Shale, Southern Indus Basin, Pakistan?®
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Geologic Characterization (Ranikot Formation)

The Paleocene Ranikot Formation contains three gas fields in the Karachi Trough. The
shales in the Ranikot Formation are primarily in the upper carbonate unit which consists of
fossiliferous limestone, interbedded with dolomitic shale, calcareous sandstone and “abundant”
bituminous material. The upper unit was deposited in a restricted marine environment. West of
the Karachi Trough axis, the upper (and lower) Ranikot Formation becomes dominantly shale

(Korara Shale) of deep marine depositional environment.

ARI estimates an interval thickness of 2,000 to 4,000 feet for the Randikot Formation in
the center of the Karachi Trough, with an organic-rich section of 1,500 feet and a net
completable shale thickness of 450 feet with low clay content, Figure XII-26. We assume 2%

TOC and thermal maturity of 1.0% to 1.3%, placing the shale in the wet gas window.

Resources (Ranikot Formation)

Based on an estimated prospective area of 4,000 mi?, and a resource concentration of
157 Bcf/Mi?, we estimate the risked shale gas in-place for the Ranikot Formation at 126 Tcf, with

31 Tcf as technically recoverable.

Activity

No publically available data was found on shale gas exploration or development in the

Southern Indus Basin of Pakistan.
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India

Though India possess significant reserves of natural gas, 38 Tcf in 2009, it still relys on
imports to satisfy domestic consumption. In 2009, the country consumed 5.1 Bcfd of natural
gas, while producing 3.9 Bcfd. Were India to develop the technically recoverable shale gas
resources identified in this report, it may add an additional 63 Tcf of natural gas to its domestic

reserve base?.

Pakistan

At present, Pakistan’s natural gas production and consumption are in equilibrium, each
at 3.7 Bcfd in 2009. The country possesses 28 Tcf of natural gas reserves, and has added to its
reserve base each year for the past decade. The technically recoverable shale gas resource
identified in this report could add an additional 51 Tcf to Pakistan’s reserve base, allowing it to

continue to satisfy domestic into the foreseeable future.
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XII. TURKEY

World Shale Gas Resources: An Initial Assessment

INTRODUCTION

This report assesses the two shale gas basins in Turkey - - the Thrace Basin in western

Turkey and the Southeast Anatolia Basin along the border with Iraq and Syria, Figure XIII-1.

These two basins are under active shale and conventional gas exploration by the Turkish

national petroleum company, TPAO, and international exploration companies.

Turkey may also have shale gas potential in the interior Blacklake and Taurus basins, as

well as the onshore portion of the Black Sea Basin. However, because detailed reservoir data

on shale formations in these basins is not readily available, their shale gas resource potential

has not been assessed.

Figure XllI-1. Shale Gas Basins of Turkey
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ARI estimates that the Thrace and SE Anatolian basins contain 64 Tcf of risked gas in-
place from three prospective shale formations. These formations contain an estimated 15 Tcf of

technically recoverable shale gas resource, Table XIlI-1.

Table XIIl-1. Shale Gas Reservoir Properties and Resources of Turkey

SE Anatolia .
] Basin/Gross Area Basin Thrace Basin
® . (8,586 mi?)
% (32,450 mi?)
,;."’? Shale Formation Dadas Shale Hamitabat Mezardere
Geologic Age Devonian-Silurian| Mid-Lower Eocenel| Lower Oligocene
w2 Prospective Area (miz) 2,950 312 303
*E Interval 328 - 1,300 3,280 - 8,200 1,640 - 8,200
“  |Thickness (ft) [Organically Rich 500 1,722 1,476
S Net 150 344 295
z Interval 6,560 - 9,840 12,136- 16,400 | 8,200- 10,168
o |Depth (ft)
Average 8,200 14,268 9,184
£ & [Reservoir Pressure Normal Normal Normal
2 £ |Average TOC (wt. %) 5.5% 3.9% 2.5%
§ S |Thermal Maturity (%Ro) 1.10% 1.75% 1.10%
® & [Clay Content Medium Medium Medium
g GIP Concentration (Bcflmiz) 61 128 74
9 |Risked GIP (Tcf) 43 14 7
& |Risked Recoverable (Tcf) 9 4 2
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SOUTHEAST ANATOLIAN BASIN

Geologic Characterization

The SE Anatolian Basin encompasses a large, 32,450 mi® area of the Arabian plate
inside the Turkish border, Figure XIlI-2. The basin is bounded on the north by the Zagros suture

zone, which marks the juncture of the Arabian and Eurasian tectonic plates.

In the early Paleozoic, Silurian-age shale formations were deposited throughout the
northern Godwana super continent (present day North Africa and the Middle East) after major
sea level rise caused by melting Ordovician-age glaciers. Regional lows and offshore deltas
with anoxic conditions received layers of organically rich sediments that now represent
promising shale targets. The SE Anatolian Basin was part of the northern edge of the Godwana
super continent, which later separated to form the Arabian plate. As such, the basin shares
similar geology with the oil-producing regions of Saudi Arabia and Iraq, though it exhibits greater
faulting and thrusting caused by the collision with the Eurasian plate. This basin is the primary

source of Turkish oil production.

The most promising source rock within the SE Anatolian Basin is the Silurian-Devonian
Dadas Shale, Figure XIlI-3. The basin covers an area the size of the Barnett Shale along the
Zagros suture margin. The basal member of the Dadas Shale has long been recognized as the
regional oil source rock, but the formation was recently discovered to be gas-prone in its

northern areas.

Using available reservoir data, ARI mapped a 2,950 mi® area of the Dadas Shale as
prospective for shale gas development. The Dadas Shale is present over approximately 20% of
north central SE Anatolian Basin, but is only inside the gas window in the most northern areas.
Detailed thermal maturity data for the formation was not available, but guidance provided by
TPAO in corporate presentations enables us to establish the prospective area for shale gas

development.
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Figure XIll-2. Dadas Shale Prospective Area, SE Anatolian Basin, Turkey
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The Dadas Shale deepens and thickens to the north, where it enters the gas generation
window, Figure XllI-4. Within the prospective area, essentially the northern half of the shale’s
areal extent in the SW Anatolian Basin, the depth of the Dadas Shale ranges from 6,560 feet to
9,840 feet deep, averaging 8,200 feet. The shale comprises three members, which together
can reach a gross thickness of up to 1,300 feet, Figure XllI-3. However, organically rich pay is
primarily concentrated in the basal Dadas member (Dadas ), which has a net shale thickness of
approximately 150 feet." Organic content within this horizon ranges from 2% to 16%, averaging
5.5%, and increasing to the north.? The prospective area is within the wet-gas generation

window, with a thermal maturity between 1% and 1.2% Ro.
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Resources

Using the Dadas Shale reservoir characteristics discussed above, ARI calculated a
moderate gas in-place resource concentration of 61 Bcf/mi2. Within the 2,950 mi? prospective
area, we estimate the shale formation contains a risked gas in-place of 43 Tcf, of which 9 Tcf is
estimated to be technically recoverable. However, while the formation exhibits favorable
properties for shale gas development, the prospective area exhibits heavy faulting, which could
pose significant development risks, Figure XllI-4. Additional data on the maturity and organic
thickness of the Dadas Shale throughout its depositional area would help refine the prospective

area and improve the reliability of this resource estimation, Table XIlI-1.
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Figure XIII-3. SW Anatolia Basin Stratigraphic Figure XlIl-4. SW Anatolian Basin Cross-Section1
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Activity

As an area of active oil production and exploration, the SE Anatolian Basin has been
largely leased for conventional crude oil exploration. The Turkish National Petroleum Company
(TPAO) holds the majority of the leases in this area, but small international petroleum
exploration companies, such as Aladdin, Perenco and others are also active. At present,
TPAO'’s ability to explore its unconventional potential is limited by the lack of horizontal drilling

and fracturing equipment in country and personnel experience.

Shale gas exploration is proceeding through a partnership between TPAO and
Canadian-based exploration firm Transatlantic Petroleum. The former has brought in well drilling
and completion equipment suited for shale gas drilling and personnel with experience in
unconventional gas development. As part of this partnership, Transatlantic Petroleum will
reenter and fracture stimulate existing conventional wells drilled by TPAO in the Dadas Shale
and overlying sandstone reservoirs. The first test will be performed in the Abdul Aziz well on
TPAOQO’s lease 3165, Figure XIII-5.

TPAO holds acreage within the Dadas Shale prospective area and has been evaluating
shale formations throughout Turkey. However, the company has yet to report specific plans to

independently develop or explore its shale gas resource potential.
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Figure XIII-5: Exploration Leases for Dadas Shale, SE Anatolian Basin, Turkey
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THRACE BASIN
Geologic Characterization

The Thrace Basin covers an 8,600 mi? area in European Turkey. The Basin is bordered
on the north by the Istranca Massif, by the Rhodope Massif on the west and the Sakarya Massif
on the south, Figure XllI-6. Tertiary-age (Eocene through Miocene) basin fill is extremely thick
in the Thrace Basin, nearly 30,000 feet in its center including a number of petroleum source
rocks and reservoirs. Following the discovery of the Hamitabat Gas Field in 1970, the basin
quickly became Turkey’s most important gas producing basin, accounting for approximately
85% of the country’s total gas production. About 350 wells have been drilled in the basin in
thirteen gas fields (one offshore in the Marmara Sea) and three oil fields. These assets are

mainly operated by TPAO.

The Thrace Basin contains two source rock formations with shale gas potential, the
Lower-Mid Eocene Hamitabat Formation and the Lower Oligocene Mezardere Formation,
Figure XIlI-7. The Hamitabat Formation is a very thick sequence of sandstone, shale and marl
deposited in a molasse or turbiditie shallow marine environment. The Mezardere Formation was
deposited in a deltaic environment, and also contains interbedded layers of sandstone, shale
and marl®. In the deeper central-southern areas of the basin, these shales have sufficient
thermal maturity to be in the gas window. Additional data may help identify further areas with

organically rich shales.

The prospective area for the Mezardere and Hamitabat sections depends on settings
with sufficiently thick net shale sequences and adequate thermal maturity. Because of their
complex depositional environments, accurately locating packages of prospective shale intervals
within the Mezardere or Hamitabat formations requires detailed geologic data, which were not

available for this report.

The prospective areas ARI identified for the Mezardere and Hamitabat formations are
based primarily on thermal maturity data. Because these formations are relatively young, they
only reach the gas window at great depth, often deeper than the 5,000 m threshold used in this
analysis. The 312 mi® prospective area of the Hamitabat Shale was constructed based on work
by Gurkey, who used well data and laboratory analysis to establish the area inside the gas
window®. The 303 mi? prospective area of the Mezardere Formation is based on analysis by

Karahanoglu et al., which identified a gas-prone area of the shale based on mathematical
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modeling of the basin’s thermal history,® Figure XIII-6.

Reservoir Properties (Prospective Area)

Hamitabat Shale. The deepest and oldest shale formation in the Thrace Basin, the
Hamitabat Shale, is also the most thermally mature. The shale is in the gas window at depths
of 12,100 feet to 16,400 feet in the center of the basin, Figure XllI-8,4 with Ro ranging from 1%
to 2.5%.Frrort Bookmark not defined.  rqanjc content is highly variable throughout the formation,
ranging from fractions of a percent to above 6%.° Within the prospective area, TOC ranges
from 1.5% to 6.4%, averaging 3.9%’. The gross interval of the Hamitabat Shale ranges from
3,280 feet to 8,200 feet thick, Figure XIllI-7. Because data on net shale thickness is not widely
available, one-third of the average shale interval, 1,722 feet, is assumed to be organically rich.

Applying a net to gross ratio of 20%, the net shale thickness is estimated to be 344 feet.®

Mezardere Shale. The Mezardere Shale is another very thick, regionally extensive shale
interval in the Thrace Basin. However, its prospectivity is limited by low organic content and
thermal maturity. (Some of the available literature suggests that the entire Mezardere Shale is

Error! Bookmark not defined.) \/jthin the formation’s prospective area, the target

outside the gas window.
shale interval ranges from 8,200 to 10,168 feet deep, Figure XIlII-8. Total organic content ranges
from 1% to 4%, with an average of 2.5%.2 Thermal maturity is assumed to be in the wet-gas

Error! Bookmark not defined. The gross interval of the Mezardere

window, ranging from 1% to 1.2% Ro.
Shale ranges from 1,640 feet to 8,200 feet thick, Figure XllI-7. Net organically rich shale was
determined by the same methodology used for the Hamitabat Shale, resulting in an assumed

organically-rich thickness of 1,476 feet and a net shale thickness of 295 feet.
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Figure XIII-6. Prospective Shale Formations of the Thrace Basin, NW Turkey
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Figure XIII-7. Thrace Basin Stratigraphic Figure XIII-8. Thrace Basin Cross SectionError! Bookmark not defined.
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Resources

Based on reservoir characteristics discussed above, ARI calculates a shale gas
resource concentration of 128 Bcf/mi? for the Hamitabat Shale and 74 Bcf/mi? for the Mezardere
Shale. Within their prospective areas, the Hamitabat and Mezardere shales contain a risked
gas in place of 14 Tcf and 7 Tcf, respectively. Of this, an estimated 4 Tcf could be technically
recoverable in the Hamitabat Shale and 2 Tcf could be technically recoverable in the Mezardere
Shale, Table XllI-1. Additional data on these shale formations’ net thickness will help to provide

a more accurate estimate of their resource potential.

Activity

Though the Thrace Basin is under active conventional gas development by a number of
domestic and international firms, its shale gas potential is only being targeted by Transatlantic
Petroleum. As in the SE Anatolia Basin, Transatlantic has entered into an agreement with
TPAO to recomplete and test wells in prospective shale formations. Transatlantic’s current
agreement calls for the company to recomplete three wells on a centrally located lease in the

Thrace Basin and drill an additional three to four wells over the coming year, Figure XIII-9.

Transatlantic also has been acquiring additional acreage in the Thrace Basin. On
November 8, 2010, the company entered into an option agreement to acquire Thrace Basin
Natural Gas Turkiye Corp and Pinnacle Turkey (TBNG) in a combination cash/stock transaction.
TBNG currently produces 25 MMcfd in the Basin and holds interests in approximately 600,000

net onshore acres in Turkey.
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Figure XIII-9: Shale Gas Exploratory Leases , Thrace Basin, Turkey
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Turkey is highly dependent on imports to meet its natural gas consumption needs. In
2009, the country consumed 3.4 Bcfd of natural gas, of which only 0.07 Bcfd was produced
domestically. The country’s current natural gas reserves are very limited. With estimated
technically recoverable shale gas resources of 15 Tcf, successful development could contribute
to Turkey’s energy independence.
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XIV. AUSTRALIA

INTRODUCTION

Australia has major gas shale potential in four main assessed basins. Additional
potential may exist in other basins that were not assessed due to budget and data limitations.
With geologic and industry conditions resembling those of the USA and Canada, the country
appears poised to commercialize its gas shale resources on a large scale. The Cooper Basin,
Australia’s main -onshore gas-producing basin, could be the first to develop, although its
Permian-age shales have a non-marine (lacustrine) depositional origin and the gas has elevated
CO, concentrations. Santos and Beach Energy testing the shale reservoirs in this basin, with

reservoir core wells being drilled and initial frac production test wells planned for later in 2011.

Other prospective shale basins in Australia include the small, scarcely explored
Maryborough Basin in coastal Queensland, which contains prospective Cretaceous-age marine
shales that are over-pressured and appear gas saturated. The Perth Basin in Western
Australia, undergoing initial testing by AWE and Norwest Energy, has prospective marine shale
targets of Triassic and Permian age. Finally, the large Canning Basin in Western Australia has
deep, Ordovician-age marine shale that is roughly correlative with the Bakken, Michigan, and
Baltic basins. Figure XIV-1 shows the main prospective gas shale basins of Australia. These
basins hold an estimated total 396 Tcf of technically recoverable shale gas resources, Table
XIV-1.

February 17, 2011 XIV-1 a

Advanced Resourcas
International, Inc.



World Shale Gas Resources: An Initial Assessment

Figure XIV-1. Australia’s Prospective Gas Shale Basins, Gas Pipelines, and LNG Infrastructure
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Table XIV-1. Shale Gas Reservoir Properties and Resources of Australia
. . . Canning
. Cooper Basin Maryborough Basin Perth Basin .
S Basin/Gross Area Basin
© 2! i2) 12 i2!
e (46,900 mi?) (4,290 mi?) (12,560 mi?) (181,000 mi)
32 Shale Formation Roseneath-Epsilon-Murteree | Goodwood/Cherwell Mudstone (| Carynginia Shale | Kockatea Fm | Goldwyer Fm
Geologic Age Permian Cretaceous Upper Permian | Lower Triassic|[M. Ordovician
e Prospective Area (miz) 5,810 1,555 2,180 2,180 48,100
g Interval 0- 1,800 300- 3,000 300- 1,500 300-3,000 || 300-2414
& |Thickness (ft) [Organically Rich 500 1,250 950 2,300 1,300
©
< Net 300 250 250 230 250
.E Depth (f) Interval 6,000 - 13,000 5,000 - 16,500 4,000 - 16,500 | 3,300 - 16,500/f3,300 - 16,500
: Average 8,500 9,500 10,700 10,000 12,000
£ & [Reservoir Pressure Moderately Overpressured Slightly Overpressured Normal Normal Normal
2 T |Average TOC (wt. %) 2.5% 2.0% 4.0% 5.6% 3.0%
% §' Thermal Maturity (%Ro) 2.00% 1.50% 1.40% 1.30% 1.40%
€ a Clay Content Low Low Low Low Low
g GIP Concentration (Bcflmiz) 105 110 107 110 106
2 [Risked GIP (Tcf) 342 7 98 100 764
& [Risked Recoverable (Tcf) 85 23 29 30 229
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Given budget limitations for this study, other less promising basins in Australia were
rapidly screened out as non-prospective for gas shale development. These include the Sydney
Basin (where Permian coal measures are mature but appear ductile); Lorne Basin (no apparent
potential source rocks); the Clarence-Moreton, Ipswich, Surat, Eromanga basins (Jurassic
Walloon Coal Measures are mature but appear ductile); Gippsland Basin (coaly shale appears
ductile); and Amadeus Basin (thin shale in a mostly sandstone unit). However, these and other

basins warrant further evaluation at a future time.

COOPER BASIN (SOUTH AUSTRALIA AND QUEENSLAND)

Straddling the South Australia and Queensland border, the Cooper Basin has been the
Australia’s main onshore gas supply region for the past several decades. Current production
from the basin is about 0.5 Bcfd of natural gas from conventional and low-permeability
reservoirs. Within the basin, the Nappamerri Trough contains thick, overpressured and organic-
rich shales at prospective depth, as well as extensive deep coal deposits. Gas pipelines
connect the basin to Sydney and other urban markets in eastern Australia. With extensive tight
sandstone gas production, the basin has service industry capability for advanced hydraulic

fracturing that could be adapted for developing gas shale reservoirs.

However, while overall the Cooper Basin appears favorable for shale gas development,
a key risk remains that the shales were deposited in a lacustrine (not marine) environment. In
addition, high CO, occurs in the deeper more mature troughs, though concentrations may be

lower in shallower settings.

Geologic Characterization. The Cooper Basin is a Gondwana intracratonic basin
containing about 2.5 km of entirely non-marine Late Carboniferous to Middle Triassic strata,
which include prospective Permian-age shales. Following an episode of regional uplift and
erosion during the late Triassic, the Cooper Basin continued to gently subside and the Paleozoic
sequence was unconformably overlain by up to 1.3 km of Jurassic to Tertiary deltaic deposits of

the Eromanga Basin, which contain the basin’s conventional sandstone reservoirs.”

Extending over a total area of about 130,000 km?, the Cooper Basin contains four major
deep troughs with shale gas potential (Nappamerri, Patchawarra, Tenappera, and Arrabury;
Figure XIV-2). These troughs are separated by faulted anticlinal structural highs, from which

the Permian shale-bearing strata largely have been eroded.? Conventional oil and gas
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generated by the organic-rich shales and coals within the Nappamerri, Tenappera and other

deep hydrocarbon kitchens accumulated along the Murteree and other uplifted ridges.

Figure XIV-2. Major Structural Elements of the Cooper Basin.
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The Nappamerri Trough is particularly large (15,000 km?), deep (>10,000 feet), thermally
mature, and overpressured, and thus appears to be the most prospective portion of the Cooper
basin for gas shale development. The top Permian horizon reaches maximum depths of over
9,000 feet in the center of the Nappamerri Trough and over 10,000 feet in the Patchawarra
Trough. Prospective Permian shales, approximately 2,000 feet below the top Permian, occur at
depths of 10,000 to 14,000 feet. Nearly the entire extent of the two troughs appears to be
depth-prospective for shale development. Furthermore, relatively little faulting occurs within

these troughs, Figure XIV-3, as structural deformation is confined largely to the uplifted ridges.
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Figure XIV-3. Seismic Reflection Line Showing Permian REM Sequence In The Cooper Basin And Location
Of Beach Energy’s Planned Holdfast-1 Test Well, Scheduled For January 2011.

&+ |
L1500

The stratigraphy of the Cooper Basin is shown in Figure XIV-4. Conventional and tight
sandstone oil & gas reservoirs are found in the Patchawarra and Toolachee formations,
interbedded with coal deposits. These were sourced by two organic-rich complexes: the Late
Carboniferous to Late Permian Gidgealpa Group and the Late Permian to Middle Triassic
Nappamerri Group, both of which were deposited in non-marine settings. Of the two source
rock groups, the Gidgealpa Group appears the more prospective. Most of the gas generated by
the Nappamerri Group likely came from its multiple, thin, discontinuous coal seams; shales in

this unit are low in TOC, humic, and often oxidized.

Although deposited in lacustrine environments, the best shale exploration targets within
the Gidgealpa Group appear to be the Early Permian Roseneath and Murteree shales.® Figure
XIV-5 shows a stratigraphic cross-section of the Roseneath, Epsilon, and Murteree (collectively

termed REM) sequence in the Nappamerri Trough.
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Figure XIV-4. Stratigraphy of the Cooper Basin, Showing Permian-Age Shale Targets (Roseneath, Epsilon,
Murteree)
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Figure XIV-5. Stratigraphic Cross-Section In The Cooper Basin Showing The Laterally Continuous REM
Section.
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The Murteree Shale (Artinskian) is a widespread, primarily shaley formation typically 50
m thick across the Cooper Basin, becoming as thick as 80 m in the Nappamerri Trough. The
Murteree consists of dark organic-rich shale, siltstone and fine-grained sandstone, becoming
sandier to the south. TOC of the Murteree Shale averages approximately 2.5%, about 84% of
which is inertinite, based on analyses from seven wells. The Roseneath Shale, less widespread
than the Murteree due to erosion on uplifts, averages 37 m thick, reaching up to 100 m thick in
the Nappamerri Trough. The Roseneath is somewhat leaner than the Murteree, with TOC
averaging just over 1.0%. The intervening Epsilon Fm consists primarily of low-permeability
(0.1 to 10 mD) quartzose sandstone with carbonaceous shale and coal. The Epsilon, averaging
about 53 m thick in drill cores, was deposited in a fluvial-deltaic environment.*
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The total thickness of the REM sequence in the western Nappamerri Trough averages
about 1,000 feet.® The unit becomes generally thicker to the east and north, where it reaches a
maximum of about 1,800 feet. The REM sequence appears to have prospective shale

thickness across the entire western Nappamerri Trough.

The REM source rocks are dominated by Type Ill kerogens derived from plant
assemblages. They have generated medium to light (30-60° API gravity) oil rich in paraffin.
Initial mineralogical data indicate that these shales consist mainly of quartz and feldspar (50%)
and carbonate (30%; mainly iron-rich siderite). Clay content is relatively low (20%;
predominately illite).® In spite of the lacustrine depositional origin, this lithology appears brittle

and could respond well to hydraulic fracturing.

Temperature gradients in the Cooper Basin are high, averaging 2.55°F/100 ft.
Bottomhole temperature at depths of 9,000 feet average about 300°F. The Nappamerri Trough
is even hotter, with a gradient of up to 3.42°F/100 ft, due to its radioactive granite basement.
The Patchawarra Trough, which has a sedimentary-metamorphic basement, has a lower but still

elevated 2.02°F/100 ft temperature gradient.

The thermal maturity of the Permian REM section in the Nappamerri Trough is gas
prone (R, = 3% to 4%), whereas the Patchawarra Trough has lower thermal maturity (Ro = 1%).
Hydrostatic regional pressure gradients occur in most of the Cooper Basin, but locally in the
Nappamerri Trough can become overpressured at depths of 2,800 to 3,700 m.” Pressure
gradients of up to 0.7 psi/ft have been recorded in the deepest portions of the Nappamerri

Trough.

High levels of carbon dioxide are common in the Cooper Basin. Gas produced from tight
sandstones in the Epsilon Formation (central portion of the REM sequence) contains elevated
CO,, typically ranging from 8% to 24% (average 15%). Gas produced from the Patchawarra
sandstone, which underlies the REM shale sequence, contains even higher levels of CO, (8-
40%).°

Resources (REM Sequence). ARI evaluated the area that could be prospective for
shale gas development in the Cooper Basin, using standard minimum depth (6,000 feet) and
vitrinite reflectance (R, > 1.0%) cutoffs, Figure XIV-6. Completable shale intervals in the
Rosemead, Epsilon, and Murteree (REM) formations have an estimated resource concentration

of 105 Bcf/mi?, benefitting from favorable thickness, moderate TOC, high thermal maturity, and
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overpressuring, but reduced for 15% average CO, content. The prospective area for this
Permian shale-bearing sequence is estimated to be approximately 5,500 mi?, covering portions
of the Nappamerri, Arrabury, and Tenappera troughs. Net of 15% CO, content, the estimated
risked completable shale gas-in-place for the REM sequence is approximately 342 Tcf, while

risked recoverable resources are approximately 85 Tcf, Table XIV-1.

Figure XIV-6. Western Portion Of The Cooper Basin Showing Approximate Prospective Shale Gas Area.
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Activity. The Cooper Basin is Australia’s largest onshore oil and gas production region.
Oil and gas development began in the basin during the 1960’s, while hydraulic fracturing of low-
permeability formations began in 1968 and has been extensively used since. More than 400
wells have been hydraulically stimulated in the Cooper basin to date, though the jobs were
much smaller (typically 50,000 Ibs sand with 50,000 gal fluid) than used in modern horizontal
shale wells. Nevertheless, the Cooper basin has Australia’s best capabilities for fracking shale
reservoirs. Current production from conventional and tight formations in the basin totals nearly
600 Mcfd from 700 gas wells and 2,500 bopd from 50 oil wells.
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The Cooper Basin also has been Australia’s most active area for gas shale leasing and
testing. Santos, Beach Energy, and DrillSearch Energy have active shale evaluation programs,
though only Beach is known to have drilled a test well. Starting in October 2010 Beach drilled
and completed a vertical shale test well in the eastern Nappamerri Trough, thought to be
Australia’s first dedicated shale test well. Drilled to a total depth of 3,612 m, the well penetrated
393 m of REM shale formation with continuous gas shows. The company is analyzing five REM
cores for gas content and mechanical properties. Beach plans to conduct an 8-stage frac of the

Encounter-1 test well during 2Q-2011.

MARYBOROUGH BASIN (QUEENSLAND)

This small basin in coastal southern Queensland, located about 250 km north of
Brisbane, has two potential gas shale targets within the Cretaceous Maryborough Formation.
Only five conventional oil & gas exploration wells have been drilled in the Maryborough Basin.

No shale activity has been reported.

Geologic Characterization. The Maryborough Basin is a half-graben bounded on the
west by the major Electra Fault, Figure XIV-7. Extending over an area of 4,300-mi’ in the
onshore northern portion of the basin, where geologic data exist, it is filled with up to about 5 km
of Late Triassic to Recent sedimentary rocks that were deposited in a trans-tensional back-arc
rift basin. Major folding and faulting, along with significant erosion, occurred during the
Cretaceous-Palaeogene. Three main anticlines occur onshore within the basin, all of which

have been drilled but without conventional discoveries.®

Two main depositional sequences are present, Figure XIV-8."° The Duckinwilla Group
comprises Late Triassic to mid-Jurassic non-marine sediments and is not considered a
prospective shale gas target. Overlying the Duckinwilla is the Grahams Creek Formation, which
contains Late Jurassic to Cretaceous (Neocomian) strata, including the marine-deposited

Maryborough Formation and the fluvial-lacustrine Burrum Coal Measures.
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Figure XIV-7. Location And Shale-Prospective Area Map For Maryborough Formation, Maryborough Basin.
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Figure XIV-8. Stratigraphy Of The Maryborough Basin Showing Marine Organic-Rich Shale In The
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Maryborough Formation

DEPOSITIONAL STRUCTURAL/
AGE FORMATION STRATIGRAPHY LITHOLOGY ENVIROMMENT | THICKNESS ELSTATIE EPISODE
5 Jf s/ catonats sans Mg o o ro0m Sazirv 2
— "
a 2| eLwoT FoRMATION Bast _ S ko
—_— E — TAKURA BEDS S LOIATR, Fhisiile — 7 - spreacing I Tasman 6346 0
8 st Pty pece B9 oxieranng of T S
Foudh |ty o Miryboningn Barin
e — | sodiments
BURALM Fip- Tt grain Al
! preymonsis, sllues, 4
g COAL MEASURES e g imren gy Detaic 0300
g -
B - I
|
§ % 2 Siision, i
. mndslove,
w MARYBORDUGH PRSP — Fr——— KoH0m
FORMATION B
o ol
g 1 - -
3 E | sRAMAMS cREEX e B add Rows Cortary Inamtin
a e ocesion, A Ty A0 L Veicareu
E _I;I‘g.r" gi FORMATION sinciine, pifgioos st
—ui
. a T Hegiong it
§ TIARD S, Ao, SEn, -
gi @ | COALMEASURES o, fevguncu ot Pl cwiblia
=3 3 -
3; g MYRTLE CREEK
. 2 Do sarissn Fuaiside >
M § SAMDSTONE P an
a Foudry “iading | metacophum
PG R
4 ot e it Sandsione, sh § | Phaiteiac
. Sandsioe, shate, TS Lzt
é___ EE F‘:‘ﬁ""‘""?”' conpimacats prytte |2 | and e s ~ 300 m
4 = KN KIN BEDS &
@ K
w — £
a
£= § Lo
a8 —_— Sancitvon, shot, i
T LR -
BIGGENDEN BEDS A E [reee] -~ a0 m
v WA, ey v
Source: Hill 1994

The Maryborough Formation (Neocomian-Aptian) appears the most prospective shale
gas target in the Maryborough Basin. Up to 2.6 km thick, it is the only definitely marine unit in
the basin. The unit consists primarily of mudstones, siltstone, and sandstone, with minor
conglomerate, limestone, and coal. Within the Maryborough Fm, the most prospective sub-units
are the Goodwood Mudstone, Woodgate Siltstone, and Cherwell Mudstone members, Figure
XIV-9. These have been described as a monotonous series of mudstones with minor shales
and siltstones that characterize the marine portion of the Maryborough Formation. The
mudstones are light to dark grey, slightly calcitic and pyritic, and slightly silty. Calcite veins are

common in the lower section.

The Goodwood Mudstone is approximately 800 m thick (gross), with TOC averaging
1.5%, and is within the dry gas maturity window (R, of 2.0 to 3.0%). The Cherwell Mudstone
consists mainly of black shale about 230 m thick, but no TOC data are available. The Cherwell
ranges from 8,000 feet deep on anticlines to a projected 17,000 feet deep in the troughs. TOC

averages 1.5% and is thermally mature (R, of 2.0 to 3.5%). Mineralogy is uncertain.
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Figure XIV- 9. Cross-Section Of The Maryborough Basin Showing The Cherwell And Goodwood Mudstone
Members Of The Cretaceous Maryborough Formation.
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Resources (REM Sequence). ARI evaluated only the northern portion of the
Maryborough Basin where geologic data exist. Approximately 1,540 mi? could be prospective
for shale gas development, using standard minimum depth (6,000 feet) and vitrinite reflectance
(Ro > 1.0%) cutoffs. Additional area in the poorly constrained southern half of the basin may be
prospective. Completable shale intervals in the basal shales of the Maryborough Formation
(Cherwell and Goodwood mudstones) have an estimated resource concentration of
approximately 110 Bcf/mi?>. Risked completable gas in-place for the REM sequence is

estimated to be 77 Tcf, with risked technically recoverable resource of 23 Tcf, Table XIV-1.

PERTH BASIN (WESTERN AUSTRALIA)

The Perth Basin is a petroleum producing region that extends on- and offshore in the
southwest of Western Australia. It contains two main organic-rich shale formations with gas
development potential: the Permian Carynginia and Triassic Kockatea shales, portions of which
already produce oil and gas from conventional reservoirs. Local operator AWE is evaluating the
shale potential over approximately 1 million gross acres. AWE and partner Norwest Energy

have cored these shale targets and may fracture stimulate a shale well in the basin during 2011.
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Geologic Characterization. The Perth Basin is a north-northwest trending half-graben
with relatively simple structure that generally appears favorable for shale gas development.
About half of the basin is onshore, covering an area of approximately 20,000 mi®>. The onshore
portion of the basin contains two large deep sedimentary sub-basins, the Dandaragan and
Bunbury troughs, which are separated by the Harvey Ridge structural high, Figure XIV-10."
Further south, across the Harvey Ridge, is the Bunbury Trough with an estimated 10 km of
Permian to Cretaceous sediments but limited reservoir data.
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The Dandaragan Trough, a large syncline in the northern Perth Basin, contains the
deepest, thickest, and most prospective gas shale formations. Some 500 km long and up to 45
km wide, the Dandaragan contains as much as 15 km of Silurian to early Cretaceous
sedimentary rocks. Some of the Dandaragan is too deep for shale development, but its
northern extent and the adjoining Beagle Ridge appear to be within the shale depth window.

The area is not structurally complex but does have some significant faulting, Figure XIV-11."
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Figure XIV-11. Perth Basin Operator AWE’s Woodada Deep 1 Well Cored the Organic-Rich Carynginia Shale
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Approximately 100 petroleum exploration wells have been drilled in the onshore Perth
Basin, resulting in the discovery of six conventional natural gas fields, all located within the
Dandaragan Trough in the north. Proved reserves to date total about 600 Bcf with small
amounts of associated oil, found in the main conventional reservoirs (Upper Permian Dongara
Sandstone and Beekeeper Formation). Natural gas recovered from the deeper Permo-Triassic
reservoirs (Dongara, Mondarra, Yardarino, Woodada and Whicher Range) tends to be dry,
reflecting higher thermal maturity and the higher proportion of gas-prone organic matter in the
Permian TOC. CO, is generally low, generally nil, apart from isolated readings of 4.11% in the
Woodada-1 well and 3.92% in the Mondarra-1 well.

Tight sandstone reservoirs, still undeveloped, include the Eneabba and Yarragadee
formations and the Cattamarra Coal Measures. These reservoirs were sourced by the Triassic
and Permian source rock shales and coals, which modeling indicates are within the oil-
maturation window in the far north of the Perth basin, entering the gas window to the southeast

into the deep Dandaragan Trough.
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The sedimentary sequence in the Perth basin comprises three successions: a) Lower
Permian largely argillaceous glaciomarine to deltaic rocks (including the prospective Carynginia
Shale); b) Upper Permian nonmarine and shoreline siliciclastics to shelf carbonates; and c)
Triassic to Lower Cretaceous nonmarine to shallow marine siliciclastics (including the

prospective Kockatea Shale) deposited in a predominantly regressive phase, Figure XIV-12."

Other marine shales in the Perth Basin that were evaluated but rejected as targets
include the Triassic Woodada and Jurassic Cadda formations (too lean), the Jurassic Parmelia
(Yarragadee) Formation and (lacustrine origin, located only in the offshore), and the Cretaceous

South Perth Formation (immature, offshore only).

The Lower Triassic Kockatea Shale is considered the primary oil source-rock as well as
the main hydrocarbon flow seal in the basin. It consists of dark shale, micaceous siltstone, and
minor sandstone and limestone. The Kockatea thickens to the south within the Perth basin,
reaching maximum 1,060 m thickness in the Woolmulla-1 well, but more typically averaging
about 700 m thick (Figure XIV-13). The most organic-rich portion of this unit (Hovea Member)
is a thin (15-38 m), basal shale that averages 2.0% TOC, well above the overall formation
average of about 0.8% TOC. This basal unit contains abundant phytoplankton, suggesting that
terrigenous clay is low. The dominantly Type Il organic kerogen in this unit is rich in sapropel

and finely divided exinite.

Core samples from the Hovea Member of the Late Permian to lower Triassic Kockatea
Shale cut from the Hovea-3 petroleum exploration well provide data on reservoir quality.® The
base of this unit, from a depth of about 1,980 m, is a distinct organic-rich zone of fossiliferous
dark grey mudstone, sandy siltstone, and shelly storm beds. These sediments were deposited
at a relatively low paleo-latitude in a shallow marine environment during the earliest stage of a
marine transgression. TOC of the Kockatea Shale sampled from this well ranged from 2.31% to

7.65% (average 5.6%) over a 30-cm interval, consisting of inertinite-rich (Type IlI) kerogen."”

The clay content from the Hovea Member of the Kockatea Shale in the Hovea-3 well
ranged from 24% to 42% (average 33%). Separately, AWE cored the high-TOC, 50-m thick
Hovea section of the lower Kockatea in the conventional Redback-2 exploration well on EP-320
during 2010, but reported discouragingly high clay content. The Kockatea is thermally mature in
the Dongara Trough, but less mature and possibly oil-prone on the Dongara Saddle and the
flanks of the Beagle Ridge. CO, and N, contents tested quite low (0.5% and 0.4%,

respectively) from a 1,448-m deep Kockatea Shale zone in the Dongara-24 well.'®
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Figure XIV-12. Stratigraphy of the Perth Basin Showing the Prospective Lower Triassic Kockatea and

Permian Carynginia Shales
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Figure XIV-13. Structural Cross-Section of the Perth Basin Showing 700-m Thick Kockatea and 250-m Thick
Carynginia Shales at Prospective 1500-2800 m Depth.
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The Permian Carynginia Shale is a restricted-marine deposit present over a wide area
of the northern Perth Basin. The Carynginia conformably underlies the Kockatea Shale.
Although considered a less important source rock than the overlying Kockatea Shale, AWE
recently reported encouraging organic-shale characteristics for this 240- to 330-m thick unit.
Deposited in a shallow-marine environment under proglacial conditions, the Carynginia overlies
the Irwin River Coal Measures. A deeper water shale member occurs near the base of the

Carynginia Shale, including thin interbeds of siltstone, sandstone, and limestone.

Overlying the basal shale is a shallow-water, shelf limestone unit. It contains
conventional gas reservoirs, such as at Dongara field, thin, discontinuous sandstones sealed by
intraformational shales and limestones. Primary porosity in this limestone was filled by clays
and calcite during diagenesis, thus porosity is secondary dissolution or fracture porosity.
Conventional Gas is produced from the Carynginia Limestone at Woodada field, sealed by the
overlying Kockatea Shale as well as updip shaling out of the limestone facies. CO, and N,
tested fairly low (2.23% and 2.54%, respectively) from a 2,437-m deep Caryngia Fm zone in the

Elegans-1 well.
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TOC values of up to 11.4% have been recorded in the Carynginia Shale, dominated by
inertinite derived from land plants. Gas-prone, the Carynginia Shale is overmature and in the
dry gas window over most of the Perth basin. Sapropelic organic material was found in one
well, indicating that the unit may have some potential as an oil source. Source rocks are less
mature on the Dongara Saddle and the flanks of the Beagle Ridge, where the shale facies is

partly replaced by shallow-water, limestone facies.

Geothermal gradients in the Perth Basin can be elevated, ranging from 2.0°C to
5.5°C/100 m, but the gradient in the Dandaragan Trough less extreme (2°to 2.5°C/100 m).
Vitrinite reflectance data show poor relationship with depth, with extreme data scatter probably
caused by subertinite and bitumen suppression. Triassic and Permian strata are in the mature
gas window over large portions of the basin’s center. The Kockatea Shale source rocks appear
to be mature for gas generation in large tracts of the northern Perth Basin, due to the relatively

high geothermal gradient and burial depth.

Resources (Carynginia and Kockatea Shales). ARI identified the prospective portions
of the Beagle Ridge and Dandaragan Trough in the northern portion of the Perth basin, where
the Carynginia and Kockatea Shale source rocks are thick, deep, and thermally mature. An
estimated 2,180-mi? area could be prospective for shale gas development, using standard
minimum and maximum depths (6,000-16,500 ft) and vitrinite reflectance (R, > 1.0%) cutoffs.
Additional area in the poorly constrained southern half of the basin also may be prospective but

was not evaluated.

Completable shale intervals in the Permian Carynginia Shale have an estimated
resource concentration of approximately 107 Bcf/mi?, risked completable gas in-place of 98 Tcf,
and risked recoverable resources of approximately 29 Tcf. For the Triassic Kockatea Shale, the
prospective area has 110 Bcf/mi?, risked completable gas in-place of 100 Tcf, and risked

technically recoverable resources of approximately 30 Tcf, Table XIV-1.

Activity. In April 2010, AWE cut five cores in the 280-m thick shale in its Woodada
Deep exploration well in the northern Perth Basin. The company found the upper and lower
zones to have high clay content. However, the middle zone was considered more prospective,
with lower clay (value not reported), 1-4% TOC, estimated 3-6% porosity, and depths of 1,600
to 3,200 m. AWE estimated a total 13 to 20 Tcf of gas in-place at its permit within the middle
portion of the Carynginia Shale.®

February 17, 2011 XIV-19 a

Advanced Resourcas
International, Inc.



World Shale Gas Resources: An Initial Assessment

AWE plans to drill a second core well (Arrowsmith-2) to basement at about 3,200 m
depth, coring the Kockatea and Caryginia shales and the Irwin Coal Measures. The company
may fracture stimulate a shale well sometime during 2011. Australian independent Norwest
Energy, which produces oil and gas from conventional fields in the Perth Basin, is partnered
with AWE and evaluating the shale potential on EP413. In August 2010, Indian firm Bharat
PetroResources agreed to acquire half of Norwest’s interests in EP413 and TP/15, committing

up to A$15 million for exploration and drilling.

CANNING BASIN (WESTERN AUSTRALIA)

The large and scarcely explored Canning Basin in northwestern Western Australia has
emerging potential in several organic-rich shales, including the Laurel, Lower Anderson, and
Goldwyer shales, though their potential remains poorly defined. Several conventional and tight
gas discoveries have been made in the basin, though not developed due to lack of gas
pipelines, indicating that source rocks here may be mature. Buru Energy (with partner
Mitsubishi) and New Standard Energy hold most of the leases in this area and currently are

evaluating the basin’s shale potential.

Geologic Characterization. The 234,000-mi* Canning Basin (150,000 mi® of which is
onshore) is Western Australia’s largest sedimentary basin, Figure XIV-14. A broad intracratonic
rift basin, the Canning contains up to 18 km of Ordovician to Cretaceous age sedimentary rocks.
The basin is separated from the Amadeus basin to the east by a Precambrian arch. A series of
northwest-trending, fault-bounded troughs within the basin (Fitzroy Trough, Willara and Kidson

sub-basins) may contain deep shale potential.?

Although petroleum exploration started in the Canning basin in 1922, the first
commercial oil discovery was made only in 1981. Conventional exploration in the Canning
Basin has focused on the Lennard Shelf, where petroleum occurs in the Hoya Formation
(Boundary, Sundown, and West terraces) and in the Anderson Formation. Only about 60 wells
have intersected the principal source rocks in the basin, but these have all been on the uplifted
terraces; the deeper shale source rocks in the troughs have not yet been penetrated. Although
source rock data in the basin are quite limited, the oil fields discovered to date likely were

sourced by the Carboniferous Laurel Formation shale.
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Figure XIV-14. Structural Elements of the Canning Basin in Northwestern Australia
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Figure XIV-15 shows the stratigraphy of the Canning Basin. Initial data suggest that the

two primary gas shale targets in the basin are the organic-rich Ordovician Goldwyer Formation
and the Carboniferous Laurel Formation. However, the Laurel Formation could not be
rigorously assessed due to insufficient data control. Other marine shales in the Canning Basin,
such as the Calytrix Formation, appear to be too lean and have limited petroleum generative
potential.
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Figure XIV- 15. Stratigraphy Of The Canning Basin Showing Carboniferous Goldwyer And Laurel Fm Shales

Cadman et al., 1993

February 17, 2011

XIV-22

o HYDROCARBON
2| AGE STRATIGRAPHY | LITH |environ |r2aocasea)
| = HAUTERVIAN el el e
o % VALANGINIAN BROOME SST by —e i
LT BE REIASIAN
TR 4 vy o
s —
e § [owenoom JARLEMAI SILTSTONE e
4 5 = ALEXANDER FM MARINE
7] WALLAL BARBWIRE MARINE
| 2 BATHONIAN SST ST A
S| * BAJOCIAN s DELTA!
g [ T o o ANALAAS RARRAARN
w
3 SINEMURIAN s Ry
-l HETTANGIAN
=200+ 3 !
o CAANAN
wlao LADINAN - \
= o n
< e ERSKINE / CULVIDA SST FLUVIAL
£ § SCYTHIAN T AT
BLINA SHALE MARINE
o | TARTAAIAN rnan s -y
e MATUNE
eso4 Z | 5 RAZANIAN LIVERINGA FM FLUYIAL
s DELTAIC
E P KUNGURIAN
w Y NOOMKANBAH FM MARINE
= FLUVIAL
ﬁ SARMAARIAN m‘- s‘s' . e
: Bundown Wast Terrace,
& GRANT FM T L Baundary, Climeon Lake
STERHAMAN & CLACIAL
0 =
= . FLUVIAL
391 8 Pl wesrmiauan g PRECLASNL T DELTAIG
il
T [l - '
z NAMURIAN FLIVIAL @ Surdoun Lo,
9 Y ANDERSON FM by Wost Fora. Kee
oz VISEAN o
w o 8t Range,
S & [Yuleroo < LaumeL acooral | K Vo
FM FM Y @ e, Meds
TouRasAN | E Lvnnnnas UL :
350 = L _YELLGW DRUM ') @ 5B
EYER / LAHA
y FAMENNIAN thlle.I ASUI S LST MARINE @ B Juseam Nosth
= % o NAPTER T UIRGIN HLLS YN T Wece
5 FEASNIAN jrunruns
== e St
Q12 e ot ey -
w & POULTON Fl N
oy cacacies TANDALGOD s
g SEIGENIAN RED EDS
[ =T %_‘, | acouan
Z g LUDLOVIAN EVARCRITIC
= |5 winockan
T CARRIBUDDY FM MASINE
3 § wasooveRan | [T
5 ASHGILLIAN
L~ 1 CARADOCIAN
Lasod 2 =
<|a LLANDELIAN o " o
Q21 v = EPEIRIC
3 MARINE B Dodore
ol e ARENIGIAN MARINE
g g TREMODOCIAN SHALLOW
MARINE
I ~ £} Dodoren WA

Advanced Resourcas
International, Inc.



World Shale Gas Resources: An Initial Assessment

The Middle Ordovician Goldwyer Formation conformably overlies the Lower Ordovician
Willara Formation. The Goldwyer was deposited mainly in open marine to intertidal conditions.
Highly fossiliferous, it varies from mudstone-dominated in basinal areas to limestone-dominated
in some platform and terrace areas. The Goldwyer Formation averages about 400 m thick,

reaching a maximum thickness of 736 m in the Willara-1 well in the Willara Sub-basin.?’

The Goldwyer Formation is dominated by mudstone and carbonate, with ratios of these
components varying widely across the basin. The color ranges from grey-green to black,
indicating anoxic reducing conditions. Major carbonate build-ups are present locally, but have
low permeability due to secondary mineralization. Coarser siliciclastic rocks generally are
absent or restricted to minor fine-grained sandstone, which becomes more abundant towards

the southeastern margin of the basin.

Kukersite is locally abundant in the Upper Goldwyer Formation, with lesser abundance in
lower parts of the formation. In addition, the Goldwyer locally contains horizons with high
concentrations of the marine alga Gloeocapsomorpha prisca, considered to have excellent
source-rock potential. This alga also is abundant in the Amadeus, Baltic, Michigan-lllinois, and
Williston basins, each of which, including the Canning Basin, lay within 5° of the equator during
the Ordovician.?? Locally, the Goldwyer has undergone significant secondary dolomitization.
The Goldwyer Formation is thermally immature and oil prone in most petroleum wells on the

uplifted platforms and terraces, but likely mature in the adjacent deep troughs.

Figure XIV-16 shows a regional cross-section of the southern Fitzroy Trough and Jones
Arch regions of the Canning basin, where the Carboniferous Laurel Shale source rock is about 2
km deep. A more detailed cross-section shows the Laurel to be approximately 500 m thick and
1700 m deep, Figure XIV-17.

Selected TOC in the Goldwyer Fm generally ranges from 1% to 5% (mean 3%), with
some values in excess of 10%, Figure XIV-18.2> The upper member of the Goldwyer is
particularly rich, with TOC of 0.46% to 6.40%, nearly all of which originated from
cyanobacterium. Rock-Eval pyrolysis indicates that source rocks from the Upper Goldwyer
have the capacity to generate 12 kg of hydrocarbon per metric ton. Modeling indicates this
source rock is gas-mature in the Fitzroy Trough but within the oil window over much of the
southern Canning basin and the mid-basin platform. The Kidson Sub-basin, where the

Goldwyer deepens to over 6 km, also is likely to be in the dry gas window.
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Figure XIV-16. Regional Cross-Section Showing Middle Ordovician Goldwyer Shale Is Excessively Deep (>5
Km) In the Central Kidson Sub-Basin, But At Prospective Depth On Its Flanks As Well As Throughout The

Southern Fitzroy Trough.
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Figure XIV-17. Detailed Cross-Section Showing Carboniferous Laurel Shale, The Canning Basin’s Main
Source Rock, Is About 500 M Thick And 1700 M Deep In The Southern Fitzroy Trough - Jones Arch Region.
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Figure XIV-18. TOC In The Goldwyer Fm, Canning Basin Generally Ranges From About 1% To 5% (Mean 3%),
With Some Values Over 10%.
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Other potential shale targets in the Canning Basin include the Carboniferous Grant
Formation and Fairfield Group, the Devonian Gogo and equivalent formations, and Ordovician
Upper Nambeet Formation. However, these all have less than 0.5% TOC and thus are not

prospective.

Resources (Goldwyer Formations). ARI identified a prospective area in the Fitzroy
Trough in the northern portion of the Canning basin, where the Goldwyer Formation source
rocks are thick, deep, and thermally mature. An estimated 48,100 mi? may be prospective for
shale gas development in the Fitzroy, Gregory, and Kidson Troughs, although data for these
largely undrilled areas had to be extrapolated from the adjoining uplifts. Completable shale
intervals in the Goldwyer Formation has an estimated resource concentration of approximately
106 Bcf/mi?, risked completable gas in-place of 764 Tcf, and risked technically recoverable
resources of about 229 Tcf (Table 1).

Activity. Buru Energy, a new company formed by the de-merger of ARC Energy,
controls exploration permits with shale gas potential in the Canning basin. The company

reported cores of gas-mature, organic-rich shale from the Laurel formation taken from the
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Yulleroo-1 conventional exploration well in permit EP-391. Drilled in 1967, the Yulleroo-1 flowed
gas from sandstone and shales within the Laurel Formation. Other potential shale targets
include the Early Permian Noonkanbah, Carboniferous Lower Anderson, Gogo, and Goldwyer
Formations. On November 30, 2010 Mitsubishi agreed to fund an A$152.4 million exploration &
development program, including 80% (A$40 million) of Buru’s 2011 unconventional oil & gas

exploration budget, to earn a 50% interest in most of Buru’s permits.

New Standard Energy (NSE), the other principal operator in the Canning basin, holds a
45,000 km? exploration license with Goldwyer Shale potential and additional acreage in EP413
with Laurel Shale potential. NSE’s independent consultant has estimated 40-480 Tcf of gas in
place within shale formations at the company’s leases. Throughout 2010 the company sought a
partner for its shale project but has been unsuccessful to date due, it said, to the immaturity of
the play and lack of data. NSE currently is evaluating newly acquired gravity data across its

position but has not yet announced drilling plans.**

NATURAL GAS PROFILE

Australia produced 1.5 Tcf of natural gas in 2009, though only consumed 0.94 Tcf®.
Much of the gas in converted into LNG to be distributed domestically and exported to Asian
markets. As of January 2010, Australia’s estimated proven natural gas reserves is

approximately 110 Tcf.
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APPENDIX A
Table A-1. Detailed Tabulation of Shale Gas Resources: 48 Major Basins and 69 Formations
. Technicall
. . . . Risked Gas In- y
Continent Region Basin Formation Recoverable
Place (Tcf)
Resource (Tcf)
Appalachian Fold Belt Utica 155 31
Windsor Basin Horton Bluff 9 2
. Muskwa/Otter Park 378 132
Horn River
Evie/Klua 110 33
Cordova Muskwa/Otter Park 83 29
I. Canada
Liard Lower Besa River 125 31
. Montney Shale 141 49
Deep Basin
Diog Phosphate 81 20
Colorado Group 2WS & Fish Scales 408 61
North Sub-Total 1,490 388
America ) Eagle Ford Shale 1,514 454
Burgos Basin -V = — — — — - = — - - — —
Tithonian Shales 272 82
Eagle F hal 21 44
Sabinas Basin EagleFord Shale_~_| 218_ —- = — — A
Tithonian La Casita 56 11
Il. Mexico Tampico Basin Pimienta 215 65
Tamaulipas 25 8
Tuxpan Platform — _ = = = - = - = — —
Pimienta 28 8
Veracruz Basin U. K Maltrata 38 9
Sub-Total 2,366 681
Total 3,856 1,069
Maracaibo Basin La Luna 42 11
: La Ll 29 7
"I Northerr' SOUth Catatumbo SUb'BaSin _ — _a U_na —_ — ] _ —_— —_— e —_ —_ — — 4
America Capacho 49 12
Sub-Total 120 30
) Los Molles 478 167
Neuguen Basin - - - - — — — = — — — - - — —
Vaca Muerta 687 240
South
. . Aguada Bandera 250 50
America San Jorge Basin _ = - - — — = — — — - = = —
IV. Southern South Pozo D-129 180 45
America L. | 420 84
Austral-Magallanes Basinf — — mocerams - _f 2 %]
Magnas Verdes 351 88
Parana-Chaco Basin San Alfredo 2,083 521
Sub-Total 4,449 1,195
Total 4,569 1,225
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. Technically
. . . . Risked Gas In-
Continent Region Basin Formation Recoverable
Place (Tcf)
Resource (Tcf)
Baltic Basin Silurian Shales 514 129
V. Poland Lublin Basin Silurian Shales 222 44
Podlasie Depression Silurian Shales 56 14
Sub-Total 792 187
Baltic Basin Silurian Shales 93 23
VI. Eastern Europe Dnieper-Donets Basin Visean Shales 48 12
Lublin Basin Silurian Shales 149 30
Sub-Total 290 65
o P@id@ia @ale_ e 2E . _7 o
Europe North Sea-GermanBasin |~ NamurianShale | 64 | 16
Wealden Shale 9 2
Paris Basin Permo-Carboniferous Shale 303 76
Scandinavia Region Alum Shale 589 147
VIl. Western Europe
. Terres Niores 112 28
South-East FrenchBasin |— — — — — — — | — — — — — — — — —
Liassic Shale 305 76
N. UK. Petroleum System Bowland Shale 95 19
S. U.K. Petroleum System Liassic Shale 2 1
Sub-Total 1,505 372
Total 2,587 624
T: F i 2 1
Ghadames Basin - - —aDnSZEﬂ— ormation_ _ | _ __ Ei 9 e §6— -— =
Frasnian Formation 251 75
VIIl. Central North Africa . . Sirt-Rachmat Formation 647 162
SitBasin [ --—-—--——-—-—-————-—-— /- —“——————-|-———— - ———
Etel Formation 443 111
Sub-Total 1,861 504
Tindouf Basin Silurian Shales 251 50
Africa IX. Morocco Tadla Basin Silurian Shales 16 3
Sub-Total 267 53
__ Prince Albert 453 91
. Karoo Basin Whitehill 995 298
X. South Africa _ = = — - — - —
Collingham 386 96
Sub-Total 1,834 485
Total 3,962 1,042
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. Technically
. . . . Risked Gas In-
Continent Region Basin Formation Recoverable
Place (Tcf)
Resource (Tcf)
L i 1,37 4
SichuanBasin |- - - - ongmaxt o 1I__|__ e
Qiongzhusi 1,394 349
XI. China ) ) 01/02/03 Shales 897 224
TarimBasin |- - - - - - —-—-——-———-F - - ————- - ———————— 1
Cambrian Shales 1,437 359
Sub-Total 5,101 1,275
Cambay Basin Cambay Shale 78 20
Damodar Valley Basin Barren Measure 33 7
Krishna-Godavari Basin Kommugudem Shale 136 27
Asia Xil. India/Pakistan Cauvery Basin Andimadam Formation 43 9
. Sembar Formation 80 20
Southern Indus Basin |— — — — — — — - — — — 1+ — — — —
Ranikot Formation 126 31
Sub-Total 496 114
. Hamitabat 14 4
Thrace Basin - — M_ g - — - — —7 - —| = — 2— — A
XIl. Turkey oo
SE Anatolian Basin Dudas Shale 43 9
Sub-Total 64 15
Total 5,661 1,404
Cooper Basin Roseneath-Epsilon-Murteree 342 85
Maryborough Basin Goodwood/Cherwell Mudstone 77 23
. XIV. Australia ) Carynginia Shale 98 29
Australia Perth Basin - - - = - — — - - - — = — — — —
Kockatea Fm 100 30
Canning Basin Goldwyer Fm 764 229
Total 1,381 396
Grand Total 22,016 5,760
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APPENDIX B
Table B-1. Play Success Probability Factors, Prospective Area Success (Risk)
Factors and Composite Success Factors

Continent| Countrv/Region Basin Formation Play Success Al:;:ssp::::::i:ses Composite
Il REVET ass ChinElie Factor Factor Success Factor
Appalachian Fold Belt Utica 100% 40% 40%
Windsor Basin Horton Bluff 50% 40% 20%
. Muskwa/Otter Park 100% 75% 75%
Horn River
Evie/Klua 80% 75% 60%
I. Canada Cordova Muskwa/Otter Park 80% 60% 48%
Liard Lower Besa River 80% 50% 40%
) Montney Shale 100% 75% 75%
Deep Basin -
North Diog Phosphate 80% 50% 40%
. Colorado Group 2WS & Fish Scales 80% 50% 40%
America
. Eagle Ford Shale 80% 50% 40%
Burgos Basin r— - - — — 14 — - — - — — 4 — —
Tithonian Shales 50% 50% 25%
. . Eagle Ford Shale 40% 40% 16%
Sabinas Basin r—-—-"—- """ - 4 — = — - —— 4 — —
) Tithonian La Casita 40% 20% 8%
Il. Mexico
Tampico Basin Pimienta 60% 40% 24%
Tamaulipas 40% 50% 20%
Tuxpan Platform - = = = — — — — 4 — — — = = —
Pimienta 40% 50% 20%
Veracruz Basin U. K Maltrata 40% 40% 16%
T e i Maracaibo Basin La Luna 50% 50% 25%
. Northern Sou
. La Luna 50% 60% 30%
America Catatumbo Sub-Basin | — — — — o — — | > PR R
Capacho 50% 60% 30%
Los Molles 80% 50% 40%
Neuquen r— = = — — — 4 — — — |= — = 7 —, —
South Vaca Muerta 80% 60% 48%
America Aguada Bandera 50% 40% 20%
IV. Southern South San Jorge — P_ D_129_ — — 60_°/ — 700/— —24;
America 0z0 - kd 2 2
L. Inoceramus 50% 50% 25%
Austra-Magallanes |— — — — — — — |— — — — — — — |— — —
Magnas Verdes 50% 50% 25%
Parana-Chaco San Alfredo 30% 40% 12%
Baltic Basin Silurian Shales 80% 50% 40%
V. Poland Lublin Basin Silurian Shales 60% 40% 24%
Podlasie Depression Silurian Shales 60% 50% 30%
Baltic Basin Silurian Shales 60% 50% 30%
VI. Eastern Europe Dnieper-Donets Basin Visean Shales 40% 40% 16%
Lublin Basin Silurian Shales 60% 40% 24%
____ PosidoniaShale | 60% | 50% |  30%
Europe North Sea-GermanBasin | Namurian Shale 60% _50% | 30%
Wealden Shale 50% 40% 20%
Paris Basin Permo-Carboniferous Shale 60% 60% 36%
VIl. Western Europe Scandinavia Region Alum Shale 50% 40% 20%
T Ni 50% 50% 25%
South-East French Basin |——— ‘eresTores } 0% L S9R ) 9%
Liassic Shale 60% 50% 30%
N. U.K. Petroleum System Bowland Shale 40% 50% 20%
S. UK. Petroleum System Liassic Shale 40% 60% 24%
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Continent| Country/Region Basin Formation Play Success Al:;:ssp:;t:i::s Composite
EIUAAREE & & Factor Factor Success Factor
i Tannezuft Formation 60% 50% 30%
Ghadames Basin - - —F— - - —F— - _t' ——————— 5 60/ —————— 5 6"/ ————— 50;/ - -
VIIL. Central North Africa rastan Torme™en u : :
. i Sirt-Rachmat Formation 50% 30% 15%
Sirt Basin
Etel Formation 50% 30% 15%
Africa Tindouf Basin Silurian Shales 50% 50% 25%
IX. Morocco
Tadla Basin Silurian Shales 40% 50% 20%
| Prince Albert 50% 30% | 15%
X. South Africa Karoo Basin _____ Wnhitehitt ) 60% | 40% | = 24%
Collingham 50% 30% 15%
. . Longmaxi 60% 50% 30%
Sichuan Basin G s 0% 0% 0%
XL China jongzhusi o o o
) . 01/02/03 Shales 40% 40% 16%
Tarim Basin
Cambrian Shales 40% 40% 16%
Cambay Basin Cambay Shale 60% 60% 36%
Damodar Valley Basin Barren Measure 50% 50% 25%
Asia T S, Krishna-Godavari Basin Kommugudem Shale 50% 40% 20%
Cauvery Basin Andimadam Formation 50% 60% 30%
. Sembar Formation 50% 40% 20%
Southern Indus Basin —_— = — = — - — =4 — - — = = —
Ranikot Formation 50% 40% 20%
. Hamitabat 60% 60% 36%
Thrace Basin - = = = = = — = = = = — — —|= = —
XIil. Turkey Mezardere 60% 50% 30%
SE Anatolian Basin Dudas Shale 40% 60% 24%
Cooper Basin Roseneath-Epsilon-Murteree 75% 75% 56%
. _ Maryborough Basin Goodwood/Cherwell Mudstone 75% 60% 45%
Australia XIV. Australia Perth Basin | QaryﬂginiiShile | 60_%) e lO%_ _42% H
Kockatea Fm 60% 70% 42%
Canning Basin Goldwyer Fm 60% 25% 15%
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